
R e s e a r c h P r o j e c t

C o n f o r m a l L a t t i c e S t r u c t u r e M o d e l l i n g

i n C l a s s C A D

Author: Yohanes Sugiarto
Politeknik ATMI Surakarta

Partner: Prof. Dr. sc. tecn. Norbert Frei
Dr. Rainer Weigel

Yohanes Sugiarto 2/35

1 Table of Contents

1 Table of Contents ... 2

2 Summary ... 3

3 Introduction ... 4

3.1 Project Description ... 4

3.2 Goals ... 4

3.3 Motivation... 5

4 Literature Review .. 6

4.1 Lattice Structure ... 6

4.2 Paper 1: Review on Characterization and Impact of The Lattice Structure in Additive
Manufacturing .. 6

4.3 Paper 2: Creation of Lattice Structures for Additive Manufacturing in CAD
Environment ... 7

4.4 Paper 3: A Method to Generate Lattice Structure for Additive Manufacturing 8

4.5 Paper 4: Conformal Lattice Structure Design and Fabrication 10

4.6 Study on nTopology Application ... 11

4.7 ClassCAD .. 13

4.7.1 Buerli .. 14

4.8 Open CASCADE .. 15

4.8.1 PythonOCC .. 16

5 Methodology ... 17

5.1 Overview .. 17

5.2 Technologies .. 17

5.2.1 ClassCAD – Buerli .. 17
5.2.2 PythonOCC .. 27

6 Conclusions .. 33

6.1 Lessons Learned .. 33

6.2 Encountered Problems ... 33

6.3 Future Work ... 33

7 List of Figures ... 34

8 References .. 35

Yohanes Sugiarto 3/35

2 Summary

Developments in additive manufacturing (AM) are not without reasons. AM has several
advantages, it reduces product development time and costs, reduces tools usage, saves
material, and reduce human intervention in the manufacturing process. In AM, product
design is transferred directly to the AM machine for production. AM also opens the door
for lattice structure to become more popular. There are no barriers for applying lattice
structure into a product as long as it is produced via AM. Lattice structure allows the
creation of products that are light yet strong and sturdy.

Lattice structure becomes a necessary feature in modern computer-aided design (CAD)
applications. ClassCAD as a framework that provides services for CAD systems needs
to include the lattice structure as one of its feature among the whole wide range selection
of features and services. This project explored the possibility to realize that.

There are four types of lattice structure, i.e. conformal periodic, conformal non-periodic,
non-conformal periodic, and non-conformal non-periodic. Periodic lattice structures use
array of unit cells to construct the structures. In a non-conformal one, the unit cells
maintain their form so trimming process is necessary to get the expected volume. In a
conformal one, the unit cells are deformed more and more towards the volume surface,
so that in the end the unit cells conform to the surface. Non-periodic lattice structures
have no arrangement of unit cells, struts are joined at random points inside the lattice
volume. In lattice structures where randomness and conformity become characteristic,
meshes can be used to generate lattices.

Non-conformal periodic lattice structure can be constructed using the existing features
of ClassCAD. But efficiency is still a big question. Other lattice structures that use
meshes can be explored using PythonOCC and Meshio. The mesh can be generated
using Gmsh application.

Yohanes Sugiarto 4/35

3 Introduction

3.1 Project Description

In the manufacturing industry, several conventional methods are common, namely
subtractive manufacturing and formative manufacturing. Subtractive manufacturing is
used to create products using material removal processes. A product is shaped by
removing material through cutting, drilling, grinding, and eroding. Formative
manufacturing is used to make products using forming processes, there is almost no
material is added or removed in these processes. A product is shaped by stresses, like
compression, shear, or deformation. Widely known forming process is injection molding
which creates plastic products through injection of melted plastic material into the cavity
of the mold.

Currently, another manufacturing method is on the rise and is trending, it is additive
manufacturing (AM). As the name suggests, AM creates products by adding material.
Material is stacked layer by layer in thin 2D cross sections until the final 3D product is
completed. The technology that is very popular and has penetrated home industries is
3D printing. Actually, welding is also an additive method, because it fills small gaps with
material, but nowadays there are 3D metal printers that use the principle of welding. The
rapid use of AM is because this method has several advantages, including reduction of
product development time and costs, saving of material, reduction of additional tools,
such as cutting tools and molds, and reduction of human intervention in the process,
because the design can be directly transferred to the AM machine for building. The most
notable advantage is that AM allows the manufacture of products with complex
geometries which are not possible with the two conventional methods previously
mentioned. This allows the design processes to focus more on functional requirements.

At the same time, a design feature that is also currently gaining popularity is lattice
structure. Lattice structure can be easily produced using additive methods. Lattice
structure is usually found to fill in voids in 3d printing processes if there is a functional
part on them. Today, the lattice structure is widely used to reduce the material or the
weight and still maintaining the structural strength. Many computer-aided design (CAD)
software facilitate the design of the lattice structure. Although the lattice structure looks
complicated, CAD makes it possible to generate it automatically using certain
parameters. ClassCAD, which is an object-oriented interpreter programming language
for 3D modelling, needs to integrate the lattice structure feature.

As part of this project, the idea to incorporate the lattice structure creation in ClassCAD
needs to be pursued further, all possibilities need to be studied, and a prototype need to
be developed.

3.2 Goals

The main aim of this project is to explore and examine the possibility of modelling the
lattice structure in ClassCAD and in ClassCAD-based applications.

The following tasks give an overview of the steps, studies, and areas to be explored in
order to satisfy the main goals:

• Incorporate the study of related works and concepts that have been developed.

• Hands-on experience using existing systems that have integrated the lattice
structure generation.

o Steps and Procedures.

Yohanes Sugiarto 5/35

o Concepts and Structures.

o Feedbacks.

• Study the possibility to generate the lattice structure in ClassCAD.

o Buerli-Modeler will be used to examine the implementation.

• Implementation of concepts, algorithms, and techniques in prototypes or functions.

o Periodical and Non-Periodical Lattice Structure.

o Conformal and Non-Conformal Lattice Structure.

3.3 Motivation

The inspiration for this project came from the idea of the president of AWV-Informatik
AG, Mr. Rainer Weigel, to support lattice modelling in ClassCAD-based applications. The
lattice structure is increasingly used in the design processes and integrated in many CAD
applications. It can also be further used to analyse the functionalities and strengths..

Yohanes Sugiarto 6/35

4 Literature Review

4.1 Lattice Structure

The lattice structure has become very popular with the development of additive
manufacturing. The lattice structure is applied in many fields, such as automotive,
aerospace, mechanical engineering, biological engineering, medical, construction, etc.
Where there is a need for high strength less weight components, the lattice structure
becomes an answer.

The idea behind the lattice structure came from the crystal structure in nature1. The lattice
structure is composed of groups of components in a repeating pattern. The group is
called unit cell. In a crystal structure, the unit cell maintains its arrangement, making it
homogenous. The unit cell contains some particles that fill the space of the unit cell. Most
unit cells are hexahedral (6 faces). Figure 4-1 shows how particles can be arranged in a
cubic unit cells.

Figure 4-1. Particles Arrangement

In additive manufacturing, lattice structure is a type of architectured material formed also
by an arrangement of unit cells. The unit cell consists of edges and nodes. The edges
are the struts and the connections between those struts are the nodes.

4.2 Paper 1: Review on Characterization and Impact of The Lattice Structure in
Additive Manufacturing

This paper highlights the importance of lattice structures in AM and how the AM paves
the way in designing and modelling lattice structures. A lattice structure is an architecture
formed by an array of spatial arrangement of unit cells with edges and faces. The lattice
cellular materials are formed by the set of beam elements or supporting struts connected
to nodes. There are two main topologies of lattice structure, namely stochastic and
periodic. The shape and arrangement of unit cells in stochastic lattice structure are
random, they have unsystematic probability distribution. Whereas the arrangement of
unit cells in periodic lattice structure is fixed along axis.

Several CAD softwares that support generation of lattice structure mentioned in this
paper are Solidworks, Meshmixer, and a Matlab lattice generator.

The lattice structure can be three times stronger than the ordinary structure if its
volumetric density set correctly. The optimization of the lattice structure depends on
homogenization and ground structure methods. Three types of stresses are possible to
be loaded onto lattice structures which are bending stress, shear stress, and tension.

1 https://en.wikipedia.org/wiki/Crystal_structure

Yohanes Sugiarto 7/35

Important conclusions from this paper:

▪ Additive manufacturing is the only well-suited method for printing lattice structured
materials due to its complexity.

▪ It is found that lattices have created to form complex geometries with certain
properties like less weight, high stiffness ,low relative density, larger elasticity, and
strength compared to other solid structures.

▪ Lattice cellular materials can have high wear resistance and also reduces the
manufacturing cost and time in industries.

4.3 Paper 2: Creation of Lattice Structures for Additive Manufacturing in CAD
Environment

This paper presents a method for generating lattice structures and shows the
implementation in Visual Basic using the API from SolidWorks. The main focuses on
developing an application to generate lattice structure are:

▪ Creating a library of various types of basic unit cells.

▪ Generating lattice structure automatically.

▪ Changing the parameters of unit cells and lattice structures easily.

The method to create lattice structures consists following steps:

1. Create a library for unit cell selection.

2. Create a layer of unit cells.

3. Create a volume of lattice structure.

4. Trim the volume according to design space of the product.

Figure 4-2 shows the created library for unit cell selection.

Figure 4-2. Unit Cells

Figure 4-3 shows the creation of volume of lattice structure, the trimming of lattice
structure to fit the design space, and finally the assembly of the lattice structure in a
product.

Yohanes Sugiarto 8/35

Figure 4-3. Lattice Volume (a), Trimming (b), and Assembly (c)

Important conclusions from this paper:

▪ Method describe in this paper is to generate homogenous periodic lattice
structures. It is important to notice that 2D arrangement (single layer) of unit cells
comes before 3D arrangement (volume) of the whole lattice structure.

▪ Basic types of unit cell in cubic form which can fill in space easily.

▪ Trimming makes use of cutting operation in SolidWorks.

▪ The problems for the future are the processing time and the memory consumption.

4.4 Paper 3: A Method to Generate Lattice Structure for Additive
Manufacturing

This paper is basically similar to the second one but with some additional details and
advancements. The generations of lattice structure are divided into two part, namely for
a periodic lattice structure and a non-periodic lattice structure.

The generation of periodic lattice structure describes the creation of unit cell in more
detail. The connection between struts needs to be filled with a sphere to avoid an empty
space. The radius of the sphere should be at least equal to the radius of the strut. Figures
4-4 shows how the struts, the connection, and the sphere are combined to create joint.

Figure 4-4. Adding sphere

Several types of unit cells are also added which are shown in Figure 4-5.

Yohanes Sugiarto 9/35

Figure 4-5. Unit Cells

The generation of non-periodic lattice structure is proposed as shown in Figure 4-6.

Figure 4-6. Non-periodic lattice generation

In the non-periodic lattice structure generation method, the mesh data containing vertex
coordinates and edge indices is used to create the lattice structure. Each strut of the
lattice structure is actually an edge connecting points of each meshing element. As in
the periodic one, spheres must be added into the connections between struts. The paper
shows several cases on PTC Creo Parametric software and the implementation of the
generation of non-periodic lattice structure on Mathematica. Figure 4-7 shows how the
mesh can be used to create lattice structures.

Yohanes Sugiarto 10/35

Figure 4-7. Conformal Lattice Structures

Important conclusions from this paper:

▪ Ensure that joints between struts are not empty.

▪ If the unit cell is broken down into connections of struts, periodic and non-periodic
lattice structure could be generated in the similar fashion as long as the unit cell
cube points (periodic) or mesh vertices (non-periodic) are available.

4.5 Paper 4: Conformal Lattice Structure Design and Fabrication

This paper provides methods for generating conformal lattice structure (CLS). Conformal
lattice structure constructs the cellular materials or unit cells in such a way that they
conform to the shapes of part surfaces. Figure 4-8 shows the difference between uniform
and conformal lattices.

Figure 4-8. Uniform and conformal lattices

Looking back at the previous papers, the equivalent of a uniform lattice is a periodic
lattice, and conformal lattice could be also a kind of non-periodic lattice with some degree
of regularity, similar in term of Figure 4-8.b.

The first method presented in this paper is the construction of CLS. It basically uses the
same concept as in Paper 3 for non-periodic lattice, namely using the mesh. However, it
uses the conformal hexahedral mesh. A hexahedral mesh element has 6 faces and 8
vertices. Each unit cell or cell primitive will then be mapped to each mesh element.

The second method described in this paper is augmented size matching and scaling
(SMS). This method use heuristic approach to optimize further the lattice structure based
on loading conditions.

Important conclusions from this paper:

▪ Conformal lattice structure that has unit cell can be created using conformal
hexahedral mesh.

Yohanes Sugiarto 11/35

4.6 Study on nTopology Application

nTopology is an application that focusing in the generative design. It has its own implicit
modeling engine.

"Implicit modeling is a unique and light way of representing 3D objects using a single
mathematical function to describe a solid body, both its external shape and its interior
characteristics."2

It has some incredible capabilities inculding topology optimization, lattices, design
automation, simulation, and field-driven design. This study focusing only on the lattices.

Figure 4-9. nTopology Application

nTopology treats features and operations as blocks which can be referenced as variables
for multiple uses. Figure 4-9 shows a periodic lattice structure in a volume which is a
combination between a cube and a sphere. The basic steps for creating such a lattice
volume are as follows:

1. Create a primitive which can be considered as a solid.

2. Create a variable for the primitive.

3. Step 1-2 can be repeated as many times as needed. Figure 4-9 create two
primitives, a cube and a sphere.

4. Create any operation between primitives if necessary.

5. Create variable for each operation, so it can be used in the next processes.

6. Create a periodic lattice body. Create variable for it.

a. Select the type of the unit cell.

b. Select the volume for the arrangement to be applied, bounding box will be used.

7. Create a trim lattice body for the finalization.

a. Select the lattice body in step 6 as the lattice.

b. Select the solid as the volume to trim the lattice.

2 nTopology. "Generative Design with Complete Control".

Yohanes Sugiarto 12/35

The block structure for this example is shown below. The blocks are self explanatory,
they reflect the needed steps.

Figure 4-10. nTopology blocks

To create non-periodic lattice structure, the steps are similar. It is a matter of correct
parameterization for each block. Following figures summarize the creation of non-
periodic lattice structure using mesh.

Figure 4-11. Non-periodic lattice structure

Figure 4-11 shows the position of non-periodic lattice structure in accordance with the
volume. In this lattice, 500 beams or struts are created.

To create conformal non-periodic lattice structure, additional mesh creation step is
needed. Following figures summarize the creation of conformal non-periodic lattice
structure using mesh.

Yohanes Sugiarto 13/35

Figure 4-12. Conformal non-periodic lattice structure

Figure 4-12 on the left shows the created mesh, the created random points is in the
middle, an on the right shows the created conformal non-periodic lattice structure. The
beams on the surface follow the surface and there is no trimmed beams.

4.7 ClassCAD

ClassCAD is a framework that provides services to build CAD systems. ClassCAD uses
object-oriented manner to manage its classes and objects. The object modelling and
parameterization of CAD models are the strengths of ClassCAD. CAD systems based
on ClassCAD can be built both as plug-in for other CAD systems as well as standalone
CAD applications.

Figure 4-13. ClassCAD Feature Modeler

Figure 4-13 shows a standalone CAD application based on ClassCAD built on .NET
Framework. ClassCAD has its own properietary programming language. ClassCAD
programming language is an object-oriented, interpreted language.

Yohanes Sugiarto 14/35

Figure 4-14. ClassCAD programming

Figure 4-14 shows a glimpse of ClassCAD programming language in Eclipse IDE.
ClassCAD programming language facilitates the development and customization of CAD
functionalities. Building CAD systems has never been easier.

4.7.1 Buerli

Buerli is a framework that supports CAD system based on ClassCAD for the web. It has
a lot of features that allows the development of interactive browser based CAD
applications.

Figure 4-15. Buerli-Modeler

Figure 4-15 shows a Buerli-Modeler in action, creating part and sketch interactively. In
this project the Buerli-Modeler is used. However, the underlying technology is ClassCAD
and the logic behind it is also written using ClassCAD programming language.

Yohanes Sugiarto 15/35

4.8 Open CASCADE

Open CASCADE Technology (OCCT)3 is a 3D modeling kernel which is freely available
in open source. OCCT is an object-oriented C++ class library which provides service for:

▪ Basic data structures (geometric modeling, visualization, interactive selection and
application specific services).

▪ Modeling algorithms.

▪ Working with mesh (faceted) data.

▪ Data interoperability with neutral formats (IGES, STEP).

Figure 4-16 shows the modular structure of OCCT. There are seven modules that can
be used to develop CAD applications.

Figure 4-16. OCCT Modules

▪ Foundation Classes module underlies all other OCCT classes.

▪ Modeling Data module supplies data structures to represent 2D and 3D geometric
primitives and their compositions into CAD models.

▪ Modeling Algorithms module contains a vast range of geometrical and topological
algorithms.

▪ Mesh toolkit from "Modeling Algorithms" module implements tessellated
representations of objects.

▪ Visualization module provides complex mechanisms for graphical data
representation.

▪ Data Exchange module inter-operates with popular data formats and relies on
Shape Healing to improve compatibility between CAD software of different
vendors.

▪ Application Framework module offers ready-to-use solutions for handling
application-specific data (user attributes) and commonly used functionality
(save/restore, undo/redo, copy/paste, tracking CAD modifications, etc).

3 https://dev.opencascade.org/doc/overview/html/index.html

Yohanes Sugiarto 16/35

4.8.1 PythonOCC

PythonOCC4 is an open source Python-wrapper for Open CASCADE. It provides full
access from Python to almost all of the OCCT C++ classes. All classes and methods
share the same names and also the same signatures. With this wrapper, CAD and
geometry scripts can be written in Python, which is an interpreted object-oriented
scripting language. PythonOCC is used to speed up the prototyping and concept proofing
processes.

PythonOCC provides many examples which can be found in its Github repository5.
PythonOCC can also be used on Jupyter Notebook, making it quite easy to test concepts
and build prototypes.

4 https://github.com/tpaviot/pythonocc
5 https://github.com/tpaviot/pythonocc-demos

Yohanes Sugiarto 17/35

5 Methodology

5.1 Overview

Lattice structure is a type of architectured material composed of repetition of solid and
empty space. Lattice structure is a kind of porous material, this is one generic
characteristic of the lattice structure. Furthermore, lattice structure has some specific
characteristics, depending on how it is constructed. The following table describes the
specific characteristics based on the categorization of the lattice structure:

Table 1. Category of Lattice Structure

Lattice Structure Periodic Non-Periodic

Conformal • Use unit cell

• Use mesh down to the
volume and surface

• No trimming

• Unit cell and mesh
structures must match,
because each one of them
will be mapped onto the
other

• No unit cell

• Use mesh down to the
volume and surfaces

• No trimming

Non-Conformal • Use unit cell

• No mesh

• Trimming necessary

• Unit cell multiplied and
arranged in 3D direction to
fill the bounding box of the
volume

• No unit cell

• Use mesh to the bounding
box of the volume,
surfaces are not
considered

• Trimming necessary

What is important to notice from Table 1 is that some lattice structure constructions
require meshes and one does not. Considering the capability of ClassCAD in current
state, the non-conformal periodic lattice structure is implemented directly in ClassCAD
at the first stage. Further stages which require mesh generation are implemented using
PythonOCC.

5.2 Technologies

Several technologies are used in this project. The selection is based on the accessibility,
the availability, and the functionality, especially for rapid prototyping of functions and
applications. However, in accordance with the main goals of the project, the ClassCAD
implementations should get the priority.

5.2.1 ClassCAD – Buerli

Buerli is a framework that expanses the ClassCAD capabilities to be used as web-based
3D modeling. The main components are all in ClassCAD. The third-party libraries are
also wrapped and provided as ClassCAD services.

Buerli-Modeler is used as the tool to test the visualization and the structure of
implemented ClassCAD classes and methods.

Development Environment

Yohanes Sugiarto 18/35

In order to develop using ClassCAD, the whole ClassCAD base solution is downloaded
and built using Microsoft Visual Studio 2017. In this project, this is done only once to
localize the development changes in ClassCAD. It should prevent unnecessary conflicts
or instability, especially for the master branch or head because ClassCAD is always in a
state of rapid development and new features are added continuously. The build process
generates the core packages for further use in Buerli.

Buerli-Modeler needs to be built by involving several Buerli packages on which it
depends on. The packages used for this purpose are:

▪ buerli

▪ buerli-react-cad

▪ buerli-tooling

▪ buerli-modeler

▪ buerli.io

▪ buerli-backend

▪ buerli-developer

▪ buerligons

▪ icons

Microsoft Visual Studio Code is used to build the Buerli-Modeler, however the pre-
requisites must be installed first, namely:

▪ Node.js

▪ NPM (Node Package Manager)

▪ Yarn Package Manager

The configurationData and output entries in server.js for the Buerli-Modeler should point
to some items generated from ClassCAD build.

configurationData: 'BuerliDemo.ini',

output: 'D:/workspaces/mybuerli/Output/VS2017_64/Release',

Furthermore, BuerliDemo.ini in the generated release folder from ClassCAD build should
load the necessary packages. BuerliDemo.ini used in this project is shown below.

1. [HKEY_LOCAL_MACHINE\SOFTWARE\AWV\ClassCAD\Common]

2. // ShowClasses enables the developer mode

3. "ShowClasses"="1"

4. "dataPath"="(APP_DIR)data"

5. "verboseFileName"="(APP_DIR)LogFiles\BuerliDemoLog.txt"

6. "verboseLevel"="16583"

7. "basedll"="ExpAP.dll"

8. "basedlld"="ExpAPd.dll"

9. "tessellateCurves"="0"

10. "CC_ProductRefCreation"="3"

11. //Set this to "1" to enable protocol and logic changes for awv3-reboot / buerli

12. "clientRebootEnabled"="1"

13. "classpath"="(APP_DIR)..\..\..\cclasses"

14. //Testing

Yohanes Sugiarto 19/35

15. "testInputPath"="(APP_DIR)..\..\..\Data\Test\Input"

16. "testOutputPath"="(APP_DIR)..\..\..\Data\Test\Output"

17.

18. [HKEY_LOCAL_MACHINE\SOFTWARE\AWV\ClassCAD\SMLib]

19. "loadClassesFromDirectory"="1"

20. "classfile"="(APP_DIR)data\BuerliDemo.cf1"

21. "packagesToLoad"="System;System.GUI;Common;BaseModeling;BaseModeling.CCBaseModeling.*;FeatureMode

ler.*;T3D.*;CADModeler;GTC.*;ISO_Tool.*;CAD;Sheet;ISOChecker"

22. //"servicedll"="SMLibService.dll;SMLibExpressService.dll;GenericService.dll;LGSService.dll;LGS3DS

ervice.dll;BrepSimplificationService.dll;"

23. "servicedll"="SMLibService.dll;SMLibExpressService.dll;GenericService.dll;LGSService.dll;LGS3DSer

vice.dll;BrepSimplificationService.dll;IDEConnectionService.dll;RapidXMLService.dll"

24. "servicedlld"="SMLibServiced.dll;SMLibExpressServiced.dll;GenericServiced.dll;LGSServiced.dll;LGS

3DServiced.dll;BrepSimplificationServiced.dll;IDEConnectionServiced.dll;RapidXMLServiced.dll"

25. "applicationClass"="BuerliDemoApp"

To build the Buerli-Modeler, point the terminal in Visual Studio Code to the buerli-modeler
working directory and run the command:

yarn i:a

Still in the same working directory, to start the server run the command:

yarn classcad

To connect to the ClassCAD development, open new terminal in the same working
directory and run the command:

yarn dev

The ClassCAD development is done using Eclipse IDE. There is a plugin for ClassCAD
development in Eclipse and currently it is running stable in Eclipse Kepler.

Implementation

Currently, the implementation of ClassCAD is so advanced that it incorporates the
structure of part and assembly. The construction of lattice structure will usually be applied
on the part level. This narrows the focus of work on the structure of part.

All operations on the part handled by CC_Operation. CAD features are also operations.
Therefore, both the lattice structure as well as the unit cell must be derived from
CC_Operation. In this stage, a non-conformal periodic lattice structure is implementes.
A unit cell takes a shape of a cube, so it is better to take it a little further down as a
descendant of CC_BasicShape.

Yohanes Sugiarto 20/35

Figure 5-1. Class Diagram

Unit Cell

Classes responsible for unit cells are derived from CC_BasicShape. CC_CubicCell
defines the cubic form of a cell, it has two real members, one for the size of the cube and
one for the radius of the strut. All children of CC_CubicCell will need those member to
construct the struts.

CC_CubicCell overrides SetOperationParams(). The implementation is as follows:

1. PAR params; //[references, size, strutRadius]

2. SetReferences(params[0]);

3. SetMemberExprOrVal(size,params[1]);

4. SetMemberExprOrVal(strutRadius,params[2]);

5. OBJ_Recalc(FALSE,FALSE);

6. RETURN;

For test purpose, CreateCCOperation() is also overridden. The simple implementation is
as follows:

1. VAR cubicCell, success;

2.

3. success = TRUE;

4.

5. cubicCell = CADH_CreateBoxNew(VOID, size, size, size, SELF);

Yohanes Sugiarto 21/35

6. OBJ_MoveEntity(cubicCell, {-size/2, -size/2, -size/2});

7.

8. IF ISVOID(cubicCell) THEN

9. OBJ_ErrorMessage("Failed to create cubic cell",2);

10. success = FALSE;

11. ENDIF

12.

13. SetResultSolids(cubicCell);

14. SetTransformation();

15.

16. RETURN success;

CC_SimpleCubeCell creates struts along all edges of the base cube. It overrides only
CreateCCOperation(). Following is the implementation:

1. VAR bar, box, cubeCell, d, success, tmpStrut, tmpStrut2;

2.

3. success = TRUE;

4.

5. d = strutRadius * 2;

6. box = CADH_CreateBoxNew(VOID, size, size, size, SELF);

7.

8. bar = CADH_CreateConeNew(VOID, size, d, d, SELF);

9. tmpStrut = CADH_CreateConeNew(VOID, size, d, d, SELF);

10. OBJ_MoveEntity(tmpStrut, {size, 0, 0});

11. bar = CADH_AddSolidNew(bar, tmpStrut, SELF);

12. tmpStrut = CADH_CreateConeNew(VOID, size, d, d, SELF);

13. OBJ_MoveEntity(tmpStrut, {size, size, 0});

14. bar = CADH_AddSolidNew(bar, tmpStrut, SELF);

15. tmpStrut = CADH_CreateConeNew(VOID, size, d, d, SELF);

16. OBJ_MoveEntity(tmpStrut, {0, size, 0});

17. bar = CADH_AddSolidNew(bar, tmpStrut, SELF);

18.

19. tmpStrut = CADH_CopySolidNew(bar, NULLID, SELF);

20. OBJ_RotateEntity(tmpStrut, {-90g, 0, 0});

21. OBJ_MoveEntity(tmpStrut, {0, 0, size});

22.

23. tmpStrut2 = CADH_CopySolidNew(tmpStrut, NULLID, SELF);

24. OBJ_RotateEntity(tmpStrut2, {0, 0, 90g});

25. OBJ_MoveEntity(tmpStrut2, {size, 0, 0});

26.

27. bar = CADH_AddSolidNew(bar, tmpStrut, SELF);

28. bar = CADH_AddSolidNew(bar, tmpStrut2, SELF);

29.

30. cubeCell = CADH_IntersectSolidNew(box, bar, SELF);

31. OBJ_MoveEntity(cubeCell, {-size/2, -size/2, -size/2});

32.

33. IF ISVOID(cubeCell) THEN

34. OBJ_ErrorMessage("Failed to create cubic cell",2);

35. success = FALSE;

36. ENDIF

Yohanes Sugiarto 22/35

37.

38. SetResultSolids(cubeCell);

39. SetTransformation();

40.

41. RETURN success;

CC_CrossCubeCell creates struts between the centers of opposite faces of the base
cube. It creates 4 struts in the middle of the cube. It overrides only CreateCCOperation().
Following is the implementation:

1. VAR crossCell, d, success, tmpStrut, tmpStrut2;

2.

3. success = TRUE;

4.

5. d = strutRadius * 2;

6. crossCell = CADH_CreateConeNew(VOID, size, d, d, SELF);

7. OBJ_MoveEntity(crossCell, {size/2, size/2, 0});

8.

9. tmpStrut2 = CADH_CreateConeNew(VOID, size, d, d, SELF);

10. OBJ_RotateEntity(tmpStrut2, {0, 90g, 0});

11. OBJ_MoveEntity(tmpStrut2, {0, size/2, size/2});

12. crossCell = CADH_AddSolidNew(crossCell, tmpStrut2, SELF);

13.

14. tmpStrut = CADH_CreateConeNew(VOID, size, d, d, SELF);

15. OBJ_RotateEntity(tmpStrut, {-90g, 0, 0});

16. OBJ_MoveEntity(tmpStrut, {size/2, 0, size/2});

17. crossCell = CADH_AddSolidNew(crossCell, tmpStrut, SELF);

18. OBJ_MoveEntity(crossCell, {-size/2, -size/2, -size/2});

19.

20. IF ISVOID(crossCell) THEN

21. OBJ_ErrorMessage("Failed to create cubic cell",2);

22. success = FALSE;

23. ENDIF

24.

25. SetResultSolids(crossCell);

26. SetTransformation();

27. RETURN success;

CC_OctahedronCell creates struts between the centers of nearby faces of the base
cube. It creates 12 struts or respectively 8 faces. It overrides only CreateCCOperation().
Following is the implementation:

1. VAR bar, box, octaCell, d, l, success, tmpStrut, tmpStrut2, a, b;

2.

3. success = TRUE;

4.

5. d = strutRadius * 2;

6. l = sqrt((size*size/4) + (size*size/4));

7. box = CADH_CreateBoxNew(VOID, size, size, size, SELF);

8.

Yohanes Sugiarto 23/35

9. bar = CADH_CreateConeNew(VOID, l, d, d, SELF);

10. OBJ_RotateEntity(bar, {45g, 0, 0});

11. tmpStrut = CADH_CreateConeNew(VOID, l, d, d, SELF);

12. OBJ_RotateEntity(tmpStrut, {-45g, 0, 0});

13. bar = CADH_AddSolidNew(bar, tmpStrut, SELF);

14.

15. tmpStrut = CADH_CopySolidNew(bar, NULLID, SELF);

16. OBJ_RotateEntity(tmpStrut, {180g, 0, 0});

17. OBJ_MoveEntity(tmpStrut, {0, 0, size});

18. bar = CADH_AddSolidNew(bar, tmpStrut, SELF);

19.

20. tmpStrut = CADH_CopySolidNew(bar, NULLID, SELF);

21. OBJ_RotateEntity(tmpStrut, {0, 0, 90g});

22.

23. tmpStrut2 = CADH_CopySolidNew(bar, NULLID, SELF);

24. OBJ_RotateEntity(tmpStrut2, {0, 90g, 0});

25. OBJ_MoveEntity(tmpStrut2, {0, 0, size/2});

26.

27. bar = CADH_AddSolidNew(bar, tmpStrut, SELF);

28. OBJ_MoveEntity(bar, {size/2, 0, 0});

29. bar = CADH_AddSolidNew(bar, tmpStrut2, SELF);

30. OBJ_MoveEntity(bar, {0, size/2, 0});

31.

32. octaCell = CADH_IntersectSolidNew(box, bar, SELF);

33. OBJ_MoveEntity(octaCell, {-size/2, -size/2, -size/2});

34.

35. IF ISVOID(octaCell) THEN

36. OBJ_ErrorMessage("Failed to create cubic cell",2);

37. success = FALSE;

38. ENDIF

39.

40. SetResultSolids(octaCell);

41. SetTransformation();

42. RETURN success;

Currently, it is not required to add spheres at the joints nor at the ends of each strut
because the unit cell maintain its form in the arrangement.

Figure 5-2. Unit Cells

Figure 5-2 shows current unit cells, from left to right: cubic (base cube), simple-cube,
cross-cube, and octahedron. The generated tree structure is shown in Figure 5-3 below.

Yohanes Sugiarto 24/35

Figure 5-3. ClassCAD Tree

All created unit cells will be added into the solid set and their operation references will
also be added into the operation sequence respectively.

Lattice Structure

CC_Lattice is the class responsible for the generation of the lattice structure. For the
non-conformal periodic lattice structure, the bounding box of the lattice volume will be
used as the boundary for unit cell arrangement in all three directions. The start of
arrangement will always be from the center of the bounding box. The orientation of the
unit cell will be maintained. Thus, the arrangement will depend on this orientation.

The implementation of CreateCCOperation() in CC_Lattice is as follows:

1. VAR solidVolume, bbVolume, midPoint, csysVol, countx, county, countz, x, y, z, body,

2. solidCell, csysCell, bbNew, bbCell, size, latticeCell, lineCell, planeCell, tmpCell, id;

3.

4. size = cell.size;

5. body = volume.OBJ_GetChildren(2, "CC_Solid");

6. volume = body[0];

7. body = cell.OBJ_GetChildren(2, "CC_Solid");

8. cell = body[0];

9.

Yohanes Sugiarto 25/35

10. csysVol = volume.OBJ_GetCoordSystem();

11. csysCell = cell.OBJ_GetCoordSystem();

12.

13. solidVolume = volume.ConsumeEntities();

14. solidVolume = solidVolume[0];

15. bbVolume = OBJ_GetGeomExtents(solidVolume);

16. midPoint = bbVolume[0] + (bbVolume[1] - bbVolume[0])/2;

17.

18. cell.OBJ_SetCoordSystem(midPoint, csysCell[1], csysCell[2]);

19. solidCell = cell.ConsumeEntities();

20. solidCell = solidCell[0];

21.

22. bbNew = cell.OBJ_GetGeomExtents(solidVolume);

23.

24. countx = bbNew[1]:x / size;

25. latticeCell = CADH_CopySolidNew(solidCell,NULLID,SELF);

26. cell.OBJ_SetCoordSystem(csysCell[0], csysCell[1], csysCell[2]);

27. FOR x = 1 TO countx DO

28. tmpCell = CADH_CopySolidNew(solidCell,NULLID,SELF);

29. OBJ_MoveEntity(tmpCell, x*size*csysCell[1]);

30. latticeCell = CADH_AddSolidNew(latticeCell, tmpCell, SELF);

31. tmpCell = CADH_CopySolidNew(solidCell,NULLID,SELF);

32. OBJ_MoveEntity(tmpCell, -x*size*csysCell[1]);

33. latticeCell = CADH_AddSolidNew(latticeCell, tmpCell, SELF);

34. NEXT

35.

36. county = bbNew[1]:y / size;

37. lineCell = CADH_CopySolidNew(latticeCell,NULLID,SELF);

38. FOR y = 1 TO county DO

39. tmpCell = CADH_CopySolidNew(lineCell,NULLID,SELF);

40. OBJ_MoveEntity(tmpCell, y*size*csysCell[2]);

41. latticeCell = CADH_AddSolidNew(latticeCell, tmpCell, SELF);

42. tmpCell = CADH_CopySolidNew(lineCell,NULLID,SELF);

43. OBJ_MoveEntity(tmpCell, -y*size*csysCell[2]);

44. latticeCell = CADH_AddSolidNew(latticeCell, tmpCell, SELF);

45. NEXT

46. CADH_EraseEntity(lineCell);

47.

48. countz = bbNew[1]:z / size;

49. planeCell = CADH_CopySolidNew(latticeCell,NULLID,SELF);

50. FOR z = 1 TO countz DO

51. tmpCell = CADH_CopySolidNew(planeCell,NULLID,SELF);

52. OBJ_MoveEntity(tmpCell, z*size*csysCell[3]);

53. latticeCell = CADH_AddSolidNew(latticeCell, tmpCell, SELF);

54. tmpCell = CADH_CopySolidNew(planeCell,NULLID,SELF);

55. OBJ_MoveEntity(tmpCell, -z*size*csysCell[3]);

56. latticeCell = CADH_AddSolidNew(latticeCell, tmpCell, SELF);

57. NEXT

58. CADH_EraseEntity(planeCell);

59.

60. id = CADH_IntersectSolidNew(solidVolume, latticeCell, SELF);

Yohanes Sugiarto 26/35

61. SetResultSolids(id);

62. RETURN;

Test Result

Figure 5-4 shows the basic shape which will be used as lattice volumes. Each volume is
separate from the others.

Figure 5-4. Lattice Volumes

Firstly, the lattice structure generation using CC_CubicCell is tested. The unit cell is
rotated 30 degrees around the y-axis. For each lattice volume, the generation of lattice
structure starts from the center of the volume. Figure 5-5 shows the results.

Figure 5-5. Unit Cell Array

Next is CC_SimpleCubeCell. The unit cell is used as it is. Figure 5-6 shows the generated
lattice structure on each lattice volume.

Figure 5-6. Simple Cube

Yohanes Sugiarto 27/35

CC_CrossCubeCell is not shown in this document, but it looks basically the same as
CC_SimpleCubeCell, but with half-size translation along all axis. Lattice structure using
CC_OctahedronCell is shown by Figure 5-7.

Figure 5-7. Octahedron

The lattice structure generation can also be applied on complex lattice volume. Figure 5-
8 shows the generation of lattice structure using CC_OctahedronCell on a lattice volume
which created from boolean union of two volumes.

Figure 5-8. Lattice on Union

The generation of non-conformal periodic lattice structure using existing ClassCAD
functions is possible. However, the processing time is still a problem. During the above
tests, from top to bottom, the increase of the processing time is very noticeable.

5.2.2 PythonOCC

For the second case where mesh is needed to generate lattice structure, access to the
3D modeling kernel is important. Considering the availability and accessibility, Open
CASCADE (OCCT) is selected as an alternative. Furthermore, because a Python-
wrapper for OCCT exists and the ease of use of Python for research and prototyping,
PythonOCC is used for further experimentation.

Development Environment

The main IDE for Python programming used in this project is Microsoft Visual Studio
Code. There are only two relevant extensions used in this project, namely Python and
Pylance.

Yohanes Sugiarto 28/35

To enable the development using PythonOCC, following steps are necessary:

1. Download and install Anaconda Distribution.

2. Using the Anaconda prompt, create specific conda environment for PythonOCC.
To create environment called "pythonoccenv" the command is:

conda create -n pythonoccenv python=3.8

This also specify the use of Python version 3.8.

3. Activate the newly created environment using the command:

conda activate pythonoccenv

4. Install the pythonocc-core package using the command:

conda install -c conda-forge pythonocc-core

5. To test the installation, following command can be run under the active
environment containing PythonOCC:

python -c "import OCC; print(OCC.VERSION)"

If PythonOCC version number is printed, the installation is successful.

Further important packages that need to be install in the same Python environment are:

▪ PyQT56, to enable the desktop user interface for PythonOCC.

▪ Meshio7, to help mesh data processing in Python.

Additional tool to generate mesh is Gmsh8. This tool can be installed system-wide on the
computer.

A different computer was forced to be used in this stage, because the PythonOCC
installation was not optimal.

Implementation

In this stage, mesh data is important. For both conformal and non-conformal non-periodic
lattice structures, any mesh can be used. However, for conformal periodic lattice
structure, specific mesh is needed, because suitable unit cell must be mapped onto the
mesh.

As an example, for the implementation purpose, a mesh file of a cube has been
generated using Gmsh. This file (box_05_1.msh) contains hexahedral mesh and it will
be used from now on.

Strut

Now the strut must have extra spheres at both ends, because the full joints cannot be
guaranteed to always exist. The implementation for the Strut class is as follows:

1. from OCC.Core import BRepBuilderAPI

6 https://pypi.org/project/PyQt5/
7 https://github.com/nschloe/meshio
8 https://gmsh.info/

Yohanes Sugiarto 29/35

2. from OCC.Core.BRepAlgoAPI import BRepAlgoAPI_Fuse

3. from OCC.Core.BRepPrimAPI import BRepPrimAPI_MakeCylinder, BRepPrimAPI_MakeSphere

4. from OCC.Core.TopoDS import TopoDS_Shape, TopoDS_Shell

5. from OCC.Core.gp import gp_Ax2, gp_Ax3, gp_Dir, gp_Pnt, gp_Trsf, gp_Vec

6.

7. class Strut:

8. pt_1 = gp_Pnt(0, 0, 0)

9. pt_2 = gp_Pnt(0, 0, 0)

10. diameter = 1.0

11. origin = gp_Pnt(0, 0, 0)

12. normal = gp_Dir(0, 0, 1)

13. vect_x = gp_Dir(1, 0, 0)

14. axis = gp_Ax2(origin, normal, vect_x)

15.

16. def __init__(self, pt_1, pt_2, diameter=1.0) -> None:

17. self.diameter = diameter

18. self.pt_1 = pt_1

19. self.pt_2 = pt_2

20. self.height = self.pt_1.Distance(self.pt_2)

21. self.origin = pt_1

22. self.normal = gp_Dir(gp_Vec(self.pt_1, self.pt_2))

23. #print(self.normal.X(),self.normal.Y(), self.normal.Z())

24. self.vect_x = self.get_perpendicular_vec(self.normal)

25. #print(self.vect_x.X(),self.vect_x.Y(), self.vect_x.Z())

26. self.axis = gp_Ax2(self.origin, self.normal, self.vect_x)

27.

28. def get_perpendicular_vec(self, vec) -> gp_Vec:

29. x, y, z = 1, 1, 1

30.

31. if vec.X() > 0 :

32. x = 0

33. elif vec.Y() > 0 :

34. y = 0

35. else:

36. z = 0

37.

38. v = gp_Dir(gp_Vec(x, y, z))

39. perp_vec = vec.Crossed(v)

40.

41. return perp_vec

42.

43. def create(self) -> TopoDS_Shape:

44. cyl = BRepPrimAPI_MakeCylinder(self.axis, self.diameter/2, self.height).Shape()

45. sphere1 = BRepPrimAPI_MakeSphere(self.pt_1, self.diameter/2).Shape()

46. sphere2 = BRepPrimAPI_MakeSphere(self.pt_2, self.diameter/2).Shape()

47. strut = BRepAlgoAPI_Fuse(cyl, sphere1).Shape()

48. strut = BRepAlgoAPI_Fuse(strut, sphere2).Shape()

49. return strut

50.

51. def __eq__(self, other):

52. tol = 0.01

Yohanes Sugiarto 30/35

53. print(other.pt_1, other.pt_2)

54. if (self.pt_1.IsEqual(other.pt_1, tol) and self.pt_2.IsEqual(other.pt_2, tol)) or

(self.pt_1.IsEqual(other.pt_2, tol) and self.pt_2.IsEqual(other.pt_1, tol)):

55. return True

56. else:

57. return False

An implementation example for drawing a strut is:

1. strut = Strut(pt_1=gp_Pnt(0,0,0), pt_2=gp_Pnt(100,100,100), diameter=10)

2. strut = strut.create()

3. display.DisplayShape(strut, update=True, color='ORANGE')

And the result is as follows:

Figure 5-9. Strut

Lattice Structure

In this implementation, only hexahedron cells will be read. There are 8 points on each
cell, but most of them belong also to other cells. In the direct conversion from edges to
struts, it is important to track the generated struts to avoid copy of struts at the same
edges.

Following is the snippet to draw struts on mesh:

1. mesh = meshio.read(

2. "box_05_1.msh"

3.)

4. datas = mesh.get_cells_type("hexahedron")

5. data = datas[0]

6. points = mesh.points

7.

Yohanes Sugiarto 31/35

8. strutlist = []

9.

10. print("Hexahedron numbers: {}".format(len(datas)))

11.

12. for data in datas:

13. for i in range(0,4):

14. p1 = data[i]

15. p1_ = data[i+4]

16. if i == 3:

17. p2 = data[0]

18. p2_ = data[4]

19. else:

20. p2 = data[i+1]

21. p2_ = data[i+4+1]

22.

23. strut = [p1,p2]

24. if not Helpers.isPairExists(strutlist, strut):

25. strutlist.append(strut)

26.

27. strut = [p1_,p2_]

28. if not Helpers.isPairExists(strutlist, strut):

29. strutlist.append(strut)

30.

31. strut = [p1, p1_]

32. if not Helpers.isPairExists(strutlist, strut):

33. strutlist.append(strut)

34.

35. print("Strut numbers: {}".format(len(strutlist)))

36.

37. for strut in strutlist:

38. p1 = points[strut[0]]

39. p2 = points[strut[1]]

40. strutshape = Strut(pt_1=gp_Pnt(p1[0],p1[1],p1[2]), pt_2=gp_Pnt(p2[0],p2[1],p2[2]),

diameter=0.01)

41. strutshape = strutshape.create()

42. display.DisplayShape(strutshape, update=True, color='ORANGE')

Meanwhile, the implementation of Helpers class is:

1. import sys

2. import os

3. import numpy as np

4. import meshio

5.

6. sys.path.append(os.path.realpath('..' + os.path.sep + 'cells' + os.path.sep))

7. sys.path.append(os.path.realpath('..' + os.path.sep + 'structures' + os.path.sep))

8. from cubecell import Cubecell

9. from strut import Strut

10. from lattice import Lattice

11.

12. class Helpers:

Yohanes Sugiarto 32/35

13. def isPairExists(list, pair)->bool:

14. exist = False

15.

16. if ([pair[0], pair[1]] in list) or ([pair[1], pair[0]] in list):

17. exist = True

18.

19. return exist

Test Result

Although mesh file is provided, the lattice construction as shown in Figure 5-10 below
takes quite some time.

Figure 5-10. Conformal Non-Periodic Lattice

The processing time for all the experiments that have been carried out is not satisfactory.

Yohanes Sugiarto 33/35

6 Conclusions

Lattice structure for additive manufacturing is a topic that is quite often studied and
researched. The methods to generate the lattice structure which are discussed on
referenced papers are similar. Even on the studied application in this project, the steps
and procedures reflect the methods from those papers.

Based on the studies and experiments carried out in this project, generating lattice
structure can be implemented in ClassCAD. However, the attempt to use the current
functionality does not seem good enough to provide some efficient processes. Using
basic primitives to create lattice structure is possible, but overhead awaits up front. Work-
arounds and other methods need to be explored, especially those related to the third-
party services used in ClassCAD.

Open CASCADE has also capabilities that need to be explored further. Using
PythonOCC turned out to be quite fun and the possibility to run well on different platforms
is staggering.

6.1 Lessons Learned

3d application development requires adequate resources, especially during the test-run.
What can be applied may not necessarily work properly. Proper estimation, as well as
anticipation and early detection of system failures will provide convenience for
subsequent processes.

Working with multiple applications, libraries, and devices requires careful attention to
detail. Logs or records are needed, especially regarding version changes or configuration
changes. It will be very time consuming if a problem arises that cannot be immediately
identified whether it is related to the environment configuration or implementation.

Careful and meticulous planning is necessary, both on the project execution and on the
documentation.

6.2 Encountered Problems

Several applications and libraries turned out to be unusable because they are no longer
supported.

Sometimes the system seems to be running well but no results are obtained, and
sometimes it's the other way around. This still cannot be identified, it might be caused by
the implementation or other applications that currently running or hardware or some other
reasons.

6.3 Future Work

Further research on lattice structure is still needed. There are so many possibilities in
term of generating lattice structure. For the lattice structures that use meshes, it might
be necessary to integrate mesh generator into the lattice generator. Furthermore,
incorporate the loading and material properties into the construction process.

In term of ClassCAD, study on the underlying technologies and libraries to optimize the
process of generating lattice structure. Processing time and memory usage are the main
observations.

Yohanes Sugiarto 34/35

7 List of Figures

Figure 4-1. Particles Arrangement .. 6
Figure 4-2. Unit Cells .. 7
Figure 4-3. Lattice Volume (a), Trimming (b), and Assembly (c) 8
Figure 4-4. Adding sphere .. 8
Figure 4-5. Unit Cells .. 9
Figure 4-6. Non-periodic lattice generation ... 9
Figure 4-7. Conformal Lattice Structures .. 10
Figure 4-8. Uniform and conformal lattices.. 10
Figure 4-9. nTopology Application .. 11
Figure 4-10. nTopology blocks .. 12
Figure 4-11. Non-periodic lattice structure .. 12
Figure 4-12. Conformal non-periodic lattice structure .. 13
Figure 4-13. ClassCAD Feature Modeler .. 13
Figure 4-14. ClassCAD programming ... 14
Figure 4-15. Buerli-Modeler .. 14
Figure 4-16. OCCT Modules ... 15
Figure 5-1. Class Diagram .. 20
Figure 5-2. Unit Cells .. 23
Figure 5-3. ClassCAD Tree ... 24
Figure 5-4. Lattice Volumes .. 26
Figure 5-5. Unit Cell Array .. 26
Figure 5-6. Simple Cube ... 26
Figure 5-7. Octahedron ... 27
Figure 5-8. Lattice on Union .. 27
Figure 5-9. Strut .. 30
Figure 5-10. Conformal Non-Periodic Lattice .. 32

Yohanes Sugiarto 35/35

8 References

Botsch, Mario, et al. Polygon mesh processing. CRC press, 2010.

Nagesha, B. K., et al. "Review on characterization and impacts of the lattice structure in
additive manufacturing." Materials Today: Proceedings 21 (2020): 916-919.

Nguyen, Dinh Son, and Frédéric Vignat. "A method to generate lattice structure for
additive manufacturing." 2016 IEEE international conference on industrial engineering
and engineering management (IEEM). IEEE, 2016.

Nguyen, Dinh Son, et al. "Creation of Lattice Structures for Additive Manufacturing in
CAD Environment." 2018 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM). IEEE, 2018.

Pan, Chen, Yafeng Han, and Jiping Lu. "Design and optimization of lattice structures: A
review." Applied Sciences 10.18 (2020): 6374.

