

R e s e a r c h P r o j e c t

U t i l i z i n g A r t i f i c i a l I n t e l l i g e n c e (A I)

F o r 3 D M o d e l s

Author: Yohanes Sugiarto
Politeknik ATMI Surakarta

 Ana Ningsih
Politeknik ATMI Surakarta

Yohanes Sugiarto
Ana Ningsih 2/43

1 Table of Contents

1 Table of Contents ... 2

2 Summary ... 4

3 Introduction ... 5

3.1 Project Description ... 5

3.2 Goals ... 6

3.3 Motivation .. 6

4 Literature Review .. 8

4.1 Machine Learning .. 8

4.1.1 Type of Machine Learning .. 8
4.1.2 Machine Learning Process ... 9

4.2 Deep Learning ... 9

4.2.1 Artificial Neural Network (ANN) .. 10
4.2.2 Computation in ANN .. 10

4.3 Machine Learning Frameworks ... 11

4.3.1 TensorFlow .. 11
4.3.2 PyTorch .. 12

4.4 Additional Libraries .. 12

4.4.1 PyTorch3D ... 12
4.4.2 Kaolin ... 13

4.5 Paper Study ... 14

4.5.1 Survey and Evaluation of Neural 3D Shape Classification Approaches 14
4.5.2 Deep Learning for 3D Shape Classification from Multiple Depth Maps 15
4.5.3 PointHop: An Explainable Machine Learning Method for Point Cloud
Classification .. 17

5 Methodology ... 19

5.1 Overview .. 19

5.2 Dataset .. 20

5.3 Classification Problem ... 21

5.3.1 Multi-view Images Method ... 21
5.3.1.1 Introduction on CIFAR-10 ... 21
5.3.1.2 Experiment on ModelNet10 .. 24
5.3.1.3 Experiment on ModelNet40 .. 29

5.3.2 Point-cloud Method .. 31
5.3.2.1 Using Kaolin and PyTorch .. 31
5.3.2.2 Using Keras and TensorFlow .. 33

5.4 Generation or Reconstruction Problem ... 35

6 Conclusions .. 40

6.1 Lessons Learned ... 40

Yohanes Sugiarto
Ana Ningsih 3/43

6.2 Encountered Problems .. 40

6.3 Future Work ... 41

7 List of Figures ... 42

8 References .. 43

Yohanes Sugiarto
Ana Ningsih 4/43

2 Summary

Almost every industry that uses computers and digitalization is now expanding its
technology implementation toward Artificial Intelligence (AI). The more activities that
use information and communication technology, the more likely it is that AI can be
integrated into these activities.

In computer studies, the topic of artificial intelligence usually narrowed down to more
specific terms that refer to the methods by which the intelligence is achieved, namely
Machine Learning (ML) and Deep Learning. Both Machine Learning and Deep
Learning need to learn from the observed data first, to then generate a solution or
algorithm for a specific problem.

In the standard Machine Learning approaches, the unique features of the input data
need to be identified first, before the data is entered into the models. Deep Learning
does not need such features extraction. The features that specify a solution will be
directly learned from the data. Therefore, Deep Learning requires more data than
standard Machine Learning but less engineer's intervention during the process.

In recent years, Deep Learning has demonstrated remarkable capabilities in solving 2D
graphic tasks such as image classification, object detection, semantic segmentation,
etc. Currently, Deep Learning has also shown tremendous progress in solving 3D
graphic tasks.

This project examines the implementation of Deep Learning for the classification and
generation/reconstruction of 3D objects. Using the Python programming language, two
Deep Learning frameworks, TensorFlow and PyTorch, are utilized to create artificial
neural networks. The results are impressive. They give so much promise for further
development and implementation. Using a relatively simple Deep Learning model with
only a few learning iteration, most of the neural networks models in this project are able
to yield an average accuracy rate of over 60%.

From the internal side, the capability of existing AI models can still be improved by
optimizing and fine-tuning the hyper parameters or by incorporating existing state-of-
the-art networks. From the external side, there are still so many areas that have not
taken advantage of AI yet.

Yohanes Sugiarto
Ana Ningsih 5/43

3 Introduction

3.1 Project Description
Currently, almost all sectors that use computers and digitalization are expanding their
technology implementations toward Artificial Intelligence (AI). Like information and
communication technology, AI can be integrated into various fields. The more activities
utilize information and communication technology, the more likely AI can be integrated
into those activities. Many AI solutions have been incorporated into systems in such a
way that sometimes we as users are not aware of their existence.

In the past, many considered that AI was closely related to robotics because it was
generally known that its emergence began with the development of robotics
technology. Today, AI is becoming ubiquitous, and it is not just related to robotics. AI
offers new solutions to solve complex problems. In the health sector, AI can be used to
detect diseases with the help of expert systems. In the restaurant business, robots can
be applied as substitutes for waiters. In the warehouse management, intelligence lines
can be applied to sort and deliver goods. In the game development, state-of-the-art
non-player characters (NPC) are becoming as intelligent as the players themselves. In
transportation, self-driving cars have become smarter. And so on. Basically, AI can be
found in almost every place.

In computer studies, the topic of artificial intelligence usually narrows to a more specific
term that refers to the method by which the intelligence is achieved, namely Machine
Learning (ML). The term of Machine Learning implies that a machine or computer
needs to learn the data first, to come up with a solution or an algorithm for a problem.
Usually, for a particular problem, there will be a specific model of Machine Learning.
Machine Learning models are oriented toward one specific task to make accurate
predictions. An ML engineer will highlight specific features to be learned by the
machine to identify the correct solution.

A further term that is getting more popular is Deep Learning. Deep Learning can be
considered as a sub-discipline of Machine Learning. Deep Learning requires much
more data than normal Machine Learning but less engineer's intervention during the
process. The features that specify a solution will be directly learned from the data.
Deep learning is able to make more accurate predictions, but it will take a longer time
to train or learn.

Figure 3-1. AI, ML, and DL (Babu, 2019)

Yohanes Sugiarto
Ana Ningsih 6/43

The increase of computer performance boosts the popularity of deep learning. There
are many different fields in which deep learning is applied, such as:

1. Natural Language Processing (NLP)

Applications in this field for example: auto-completion, speech recognition,
language translation, etc.

2. Computer Vision

Applications in this field for example: object detection, face detection, self-driving
car, etc.

3. Image and audio synthesis

Applications in this field for example: image restoration, scenes generation in
games, voice generation, music composer, etc.

4. Signal processing

Applications in this field for example: noise detection, denoising signals, etc.

Generally, AI opens many possibilities that have never existed before. There is
tremendous progress in fields that usually easy for human but difficult for machines.

3.2 Goals
The main objective of this project is to study the applications of artificial intelligence in
computer vision and modeling, both for 2D and 3D. The focus of the project is the
implementation of deep learning using existing frameworks.

The following tasks provide an overview of the steps, studies, and areas to be explored
in order to fulfill the main objective:

 Include reviews of related works and concepts that previously have been studied
and developed

 Hands-on experience with existing models and methods that use deep learning
frameworks

o Data exploration

o Exploration on model selection

o Exploration on hyper-parameter tuning

o Performance measures

 Applying the hands-on into the selected 3D model realm

3.3 Motivation
The inspiration and motivation for this project came from the hype and widespread use
of AI in almost all aspects of life. Technological advancements are increasing rapidly,
huge performance improvements are happening on daily basis. This allows the use of
AI quite easily. The term AI is becoming a household term and very popular.

In the field of computer vision, AI is widely used, starting from simple image recognition
to complex obstacle and collision detection for automated or self-driving vehicles, and
even the creation of luxury arts.

Yohanes Sugiarto
Ana Ningsih 7/43

The need to connect the dots between 2D vision to 3D model is also increasing. The
use of AI in the field of 3D design and modeling is growing. In line with my current
activity in 3D modeling and programming, it is important to study and examine the
possibility of widening the current developments by applying AI solutions.

Yohanes Sugiarto
Ana Ningsih 8/43

4 Literature Review

4.1 Machine Learning
There are many definitions of Machine Learning. This field is advancing rapidly, and
more sub-disciplines are continually progressing. In general, Machine Learning
consists of computer methods which analyze observation data to automatically detect
patterns and use the uncovered patterns to perform tasks based on new unobserved
data. This definition was stated by K. Murphy in 2012.

The first definition of Machine Learning was given by Arthur Samuel in 1959: "Machine
Learning is the field of study that gives computers the ability to learn without being
explicitly programmed." A formally definition was also stated by Tom Mitchell from
Carnegie Mellon University in 1997: "A Machine Learning program is said to learn from
experience E with respect to some task T and some performance measure P, if its
performance on T, as measured by P, improves with Experience E."

The performance measure stated in the latter definition is a key concept to get the
mathematical equations for the learning process. A Machine Learning model learns
existing data and then create some sort of structure based on the data. This model will
be then the agent for solving future tasks on new data. This procedure can be pictured
as following diagram:

Figure 4-1. Machine Learning Concept

4.1.1 Type of Machine Learning
There are three types of Machine Learning, namely:

 Supervised Learning

In supervised learning, the machine is trained on a labeled dataset. It contains the
input data and the resulting output. The machine has to find its own algorithm, so
that it can predict an accurate output when given new data.

Supervise learning is usually used for classification and regression problems.

 Unsupervised Learning

In unsupervised learning, the machine is trained on a dataset which does not have
any labels nor any information about the output, whatsoever. The machine must
find similarities, patterns, and relationships inside the data. It has no specific output
prediction, but it can give categorizations.

Unsupervised learning is usually used for clustering problems.

Yohanes Sugiarto
Ana Ningsih 9/43

 Reinforcement Learning

In reinforcement learning, the machine is trained using reward and punishment
scenario. The machine use trial and error to determine which methods deliver the
most rewards. The more accurate the result, the machine will get a reward. On the
other hand, if the result tends to worsen, the machine will get a punishment. This
type of learning is suitable for optimization problems.

4.1.2 Machine Learning Process
Machine Learning process as overviewed in Figure 4-1 can be defined as sequence of
following steps:

 Data collection

This is where data is gathered from various sources. Data can be in many different
formats.

 Preprocessing

This is where data is analyzed and filtered to meet the requirements of the
Machine Learning. The data will also be split into training set and test set. Training
set will be used for training, test set will be used for validation.

In this step, feature extraction can also be done to reduce the data into set of
relevant features.

 Training

This is where the machine is learning. Its algorithm will be trained using training
set.

 Evaluation

This is where the algorithm is evaluated using the test set.

 Optimization

This is where the machine adjusts its algorithm and parameters to increase
accuracy.

 Postprocessing

Postprocessing is necessary if the output of the machine need to be adjusted to
match the output criteria, e.g., adjusting class scores into class decision.

4.2 Deep Learning
Deep Learning is a sub-branch of Machine Learning. Deep Learning is inspired by how
the brain works. A brain consists of billions of interconnected neuron cells. Deep
Learning imitates this using interconnected artificial neurons. This is where the term
Artificial Neural Network (ANN) comes. The connections between neurons determine
how the output will be. Usually, the larger the data, the more number of neurons is
needed.

Deep Learning differs from Machine Learning in several ways. First, Deep Learning
requires a significantly larger dataset. Second, which is quite a principle, Deep
Learning does not require features engineering, it will extract all features during its
learning process. Deep Learning is actually more flexible and powerful, but it requires
longer learning process.

Yohanes Sugiarto
Ana Ningsih 10/43

4.2.1 Artificial Neural Network (ANN)
Basically, an Artificial Neural Network consists of three layer, as shown in the following
image.

Figure 4-2. Shallow Neural Network

 Input Layer

The input layer contains neurons which receive the input data. Those neurons then
pass the information to the hidden layers. This layer does not perform any
computation.

 Hidden Layer

The hidden layer can contains multiplle hidden layers. Figure 4-2 has only one
hidden layer. This layer perform the computation and pass the result to the output
layer.

 Output Layer

This is the final layer which perform the final computation to get the final result.

4.2.2 Computation in ANN
The computation in Artificial Neural Network is quite straight forward. Connections
between neurons have numerical values which called weights. All weights connected to
a neurons will be summed. The result will be fed to the activation function (step
function, in Figure 4-3).

Figure 4-3. Cell Computation

Yohanes Sugiarto
Ana Ningsih 11/43

4.3 Machine Learning Frameworks
Python is currently the most widely used programming language in Data Science and
Machine Learning. Python is full of features and a platform for doing research. One of
the important things in Python is Machine Learning frameworks. There are many
Machine Learning libraries or frameworks that can be used in Python. The most
wellknown Machine Learning frameworks are TensorFlow and PyTorch. Both are
widely used in Deep Learning. Both are free and open-source.

Figure 4-4. TensorFlow vs PyTorch

According to GoogleTrends1, both are neck and neck in popularity. TensorFlow started
earlier, but its popularity declined over time and now PyTorch is already on the slightly
higher level.

4.3.1 TensorFlow
TensorFlow2 is free and open-source deep learning framework developed by Google
based on Theano. Tensorflow is known as an industry-focused framework. TensorFlow
is widely used by companies and businesses and now it gains more popularity in the
research community.

Figure 4-5. TensorFlow Logo

Several key aspects of TensorFlow:

 This framework is matured and exists for a long time.

 Popular among industry professionals.

 Support deployment into production.

 Accompanied by visualization tool of Tensorboard.

1 https://trends.google.com/
2 https://www.tensorflow.org/

Yohanes Sugiarto
Ana Ningsih 12/43

 Faster and high performance learning.

TensorFlow was initially based on a static graph execution. Static graph requires that
the Machine Learning model composition is defined at the beginning, there is no
possibility to tweak or tune the model during the learning process. However, the newer
version allows for eager mode like PyTorch and allows for real Phyton programming
style.

Keras

Keras is a high-level Application Programming Interface (API) that facilitates Deep
Learning programming. It is an free and open-source library. Keras is integrated in the
TensorFlow framework. Keras API is user friendly, easy to use, easy to understand. In
Keras, neural layers, cost functions, optimizers, initialization schemes, activation
functions, and regularization schemes are all standalone modules that can be combine
to create new Machine Learning models.

4.3.2 PyTorch
PyTorch3 is free and open-source deep learning framework developed by Facebook
based on Torch. Although it came one year later after TensorFlow, PyTorch is very
popular among researcher. PyTorch is known as a research-focused framework. It is
also known for its simplicity, ease of use, and efficient memory usage.

Figure 4-6. PyTorch Logo

Several key aspects of PyTorch:

 This framework is relatively new, but increasingly popular.

 Popular among researchers.

 No support deployment into production, third-party applications needed.

 No visualization tool, third-party tools needed.

 High performance learning but relatively slower than TensorFlow.

PyTorch is based on dynamic eager execution. The components of Machine Learning
model is constructed dynamically.

4.4 Additional Libraries

4.4.1 PyTorch3D
PyTorch3D4 is a modular and optimized library specifically for 3D Deep Learning using
PyTorch. It is also developed by Facebook. Working with 3D data is quite challenging.
PyTorch3D supposed to accelerate those kind of work.

3 https://pytorch.org/
4 https://pytorch3d.org/

Yohanes Sugiarto
Ana Ningsih 13/43

Figure 4-7. PyTorch3D Core Components

PyTorch3D has 3D operators, heterogeneous batching capabilities, and a modular
differentiable rendering API. Key features include: data structure for storing and
manipulating triangle meshes; efficient operations on triangle meshes (projective
transformations, graph convolution, sampling, loss functions); and a differentiable mesh
renderer.

4.4.2 Kaolin
Kaolin is also a PyTorch library for 3D Deep Learning. It is developed by NVIDIA.
Kaolin provides an API for working with a variety of 3D representations and includes a
growing collection of GPU-optimized operations such as modular differentiable
rendering, fast conversions between representations, data loading, 3D checkpoints and
more.

Figure 4-8. Kaolin Core Components

Yohanes Sugiarto
Ana Ningsih 14/43

4.5 Paper Study

4.5.1 Survey and Evaluation of Neural 3D Shape Classification Approaches
This paper takes the topic of classification of 3D objects. The main focus is supervised
learning, specifically the classification task, which is closely related to global feature
extraction.

The researchers conduct an extensive survey of existing Deep Learning based 3D
shape classification approaches and categorize them based on the common approach
ideas. They also evaluate 11 selected classification networks on three 3D object
datasets, extending the evaluation to a larger dataset on which most of the selected
approaches have not been tested yet.

The categorization of the networks is based on the shape of the input, namely
volumetric grid-based, multiple-viewpoint image-based, point cloud-based, networks
which process the object’s shape or mesh approximation, and hybrid methods that
process multiple representations simultaneously. Basic representation types are
illustrated in Figure 4-9.

Figure 4-9. 3D Representations for NN Input

Classification neural network architectures can be divided into two parts: a feature
extractor, which transforms the input shape representation to a feature vector, called
descriptor, and a classifier, which learns to transform the extracted features into
scores denoting the probability of individual classes. The surveyed approaches are
shown in the following picture:

Yohanes Sugiarto
Ana Ningsih 15/43

Figure 4-10. Taxonomy of The Approaches

The datasets used for the evaluation are: ModelNet40, aligned ModelNet40, and
ShapeNetCore. The experiments are conducted on Linux machines with AMD RYZEN
1950X or two Intel Xeon E5-2680 v3 CPUs, 128 GB of RAM and NVIDIA GeForce GTX
1080 Ti GPUs with driver version 440.44.

As results, during the training, the reported accuracies were not reached. The main
reason appears to be the usage of different data conversion methods. The researchers
found that the data conversion method (e.g., point cloud sampling or image rendering
method) can significantly impact the classification accuracy. They observe multi-view
image-based representations yielding the best classification accuracy and rotational
alignment being beneficial to mainly point-cloud-based networks. A larger dataset can
also improve accuracies of most networks, especially on image-based networks.

4.5.2 Deep Learning for 3D Shape Classification from Multiple Depth Maps
This paper proposes a novel approach for the classification of 3D shapes exploiting a
multi-branch Convolutional Neural Network (CNN). The algorithm starts by constructing
a set of depth maps by rendering the input 3D shape from different viewpoints.

Yohanes Sugiarto
Ana Ningsih 16/43

Figure 4-11. Example of 6 Depth Maps of A Chair

The depth maps are fed to a multi-branch Convolutional Neural Network. Each branch
of the network takes in input one of the depth maps and produces a classification
vector by using 5 convolutional layers of progressively reduced resolution.

Figure 4-12. Architecture of The CNN

The various classification vectors are finally fed to a linear classifier that combines the
outputs of the various branches and produces the final classification.

The dataset used in this research is the Princeton ModelNet. Two subsets are used,
namely: the ModelNet10 subset which contains 4,899 3D models divided into 10
different categories and the ModelNet40 subset which contains 12,311 3D models
divided into 40 different categories.

Yohanes Sugiarto
Ana Ningsih 17/43

Figure 4-13. Average Accuracies

According to the researchers, the proposed approach is fast and requires a relatively
small training effort, especially if the proposed weights sharing approach is applied,
The performance of the proposed network outperforms several recent state-of-the-art
approaches, as shown in Figure 4-13 above.

4.5.3 PointHop: An Explainable Machine Learning Method for Point Cloud
Classification

This paper proposed a method called PointHop for point cloud classification in Machine
Learning. Point cloud models are popular due to easy access and complete description
in the 3D space. A point cloud is represented by a set of points in the 3D coordinates.

Figure 4-14. Comparison of Existing Methods and PointHop

The PointHop method consists of two stages:

1. Local-to-global attribute building through iterative one-hop information exchange.

In the attribute building stage, the problem of unordered point cloud data is
addressed using a space partitioning procedure and by developing an effective
and robust descriptor that characterizes the relationship between a point and its
one-hop neighbor in a PointHop unit.

2. Classification and ensembles.

Yohanes Sugiarto
Ana Ningsih 18/43

The feature vector obtained from multiple PointHop units is fed to a classifier,
such as the support vector machine (SVM) classifier and the random forest (RF)
classifier to get classification result.

The dataset used in this research is the ModelNet40. The dataset contains 40
categories of CAD models of objects such as airplanes, chairs, benches, cups, etc.
Each initial point cloud has 2,048 points and each point has three Cartesian
coordinates. There are 9,843 training samples and 2,468 testing samples.

Figure 4-15. Accuracies Comparison

During the experiment, the PointHop method significantly reduces the training process,
while still maintaining the classification performance, in comparison with the state-of-
the-art Deep Learning.

Yohanes Sugiarto
Ana Ningsih 19/43

5 Methodology

5.1 Overview
This project on computer vision consists of two studies in the field of 3D Deep
Learning. The first one is to examine the classification problem of 3D models and then
the second one is to examine the generation or reconstruction problem of 3D models.

This project uses Python as the main programming language. In term of the Deep
Learning library, both frameworks mentioned in the previous chapter, TensorFlow and
PyTorch, are used interchangeably.

The machines used in this project are as follows:

 Windows machine:

 Processor: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 2112 Mhz

4 Core(s), 8 Logical Processor(s)

 RAM: 32 GB

 GPU: - Intel(R) UHD Graphics 620 (internal)

- NVIDIA Quadro P500

 eGPU: NVIDIA GeForce GTX 1080 Ti

 Mac machine:

 Processor: Apple M1 SoC 8-Core CPU, 16-Core Neural Engine

4 cores high-performance, 4 cores energy-efficient

 RAM: 8 GB

 GPU: 7-Core (integrated)

Development Environment

Anaconda5 is used as the platform to help the development of Machine Learning. It
provides almost all the necessary packages for Machine Learning in Python. As for the
editor, Jupyter Notebook and JupyterLab are used. They are simple and stable,
especially for Machine Learning prototyping purposes.

Due to the limited capabilities of the machines, Google Colab6 is also used in the
experiment.

Microsoft Visual Studio Code is also used to program fast required Python
components.

In Python development, besides the standard Machine Learning libraries, additional
libraries are used. The important ones are Trimesh used for 3D object operations, Glob
used for directory operations, and PPTK used for point processing.

5 https://www.anaconda.com/
6 https://colab.research.google.com/

Yohanes Sugiarto
Ana Ningsih 20/43

5.2 Dataset
The main dataset used in this project is sourced from the Princeton ModelNet7. The
Princeton ModelNet contains collection of 3D CAD models for objects. The 3D CAD
models are categorized. There are two subsets of the Princeton ModelNet dataset,
namely ModelNet10 and ModelNet40. The file format is Object File Format (OFF). This
is a geometry definition file format and can store 2D or 3D objects.

Figure 5-1. Samples from ModelNet

ModelNet10

The ModelNet10 subset contains CAD models in 10 categories, namely:

 bathtub
 bed

 chair
 desk

 dresser
monitor

 night_stand
 sofa

 table
 toilet

There are 4,899 models in total, they are split into 3,991 models for training set and
908 model for test set.

For the multi-view approach, rendered images from 12 perspectives are used.

Figure 5-2. A Chair Rendered in 12 Perspectives

ModelNet40

The ModelNet40 subset contains CAD models in 40 categories, namely:

 airplane
 bathtub
 bed
 bench
 bookshelf
 bottle
 bowl

 chair
 cone
 cup
 curtain
 desk
 door
 dresser

 glass_box
 guitar
 keyboard
 lamp
 laptop
 mantel
monitor

 person
 piano
 plant
 radio
 range_hood
 sink
 sofa

 stool
 table
 tent
 toilet
 tv_stand
 vase
 wardrobe

7 https://modelnet.cs.princeton.edu/

Yohanes Sugiarto
Ana Ningsih 21/43

 car flower_pot night_stand stairs xbox

There are 12,311 models in total, they are split into 9,843 models for training set and
2,468 model for test set.

Same as the ImageNet10, for the multi-view approach, rendered images from 12
perspectives are used.

Additionally, the CIFAR-108 dataset is also used to verify some basic functionalities in
classification using 2D images. The CIFAR-10 dataset consists of 60,000 colour
images with 32x32 size, categorized in 10 classes. Each class consists of 6,000
images. They are split into 50,000 training images and 10,000 test images.

5.3 Classification Problem
Classification problem becomes the "first-step" problem when it comes to Deep
Learning, similar to the "Hello, World" when it comes to programming.

Two approaches are used for the classification in this project. The first approach is
using multi-view images and the second one is using point-cloud generated on 3D
objects.

5.3.1 Multi-view Images Method
Basically, classification 3D objects using multi-view images is quite similar to standard
2D images classification. The first experiment is 2D classification on CIFAR-10. The
purpose of this first experiment is to make sure that the environment setup is adequate.
The Deep Learning framework used in this experiment is TensorFlow.

TensorFlow must be available on the einvironment setup. Import TensorFlow and
confirm the version:

import tensorflow as tf
tf_version = tf.__version__

print(tf_version)

5.3.1.1 Introduction on CIFAR-10
 Load and prepare the CIFAR-10 dataset

Loading the CIFAR-10 dataset is quite straightforward because it is included in
Keras.

from tensorflow.keras.datasets import cifar10
(X_train, y_train), (X_test, y_test) = cifar10.load_data()

 Inspect and verify the data

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer',
 'dog', 'frog', 'horse', 'ship', 'truck']

plt.figure(figsize=(10,10))
for i in range(25):
 plt.subplot(5,5,i+1)
 plt.xticks([])
 plt.yticks([])

8 https://www.cs.toronto.edu/~kriz/cifar.html

Yohanes Sugiarto
Ana Ningsih 22/43

 plt.grid(False)
 plt.imshow(X_train[i])
 plt.xlabel(class_names[y_train[i][0]])
plt.show()

The images and the labels are displayed as follows:

Figure 5-3. CIFAR-10 Images and Labels

 Preprocess the data

The input layer will be flatten and the pixel values are normalize in the floating
number of range of 0.0 to 1.0.

X_train = X_train.reshape(50000, 32*32*3) #change the shape towards (50000, 32*32*3)
X_test = X_test.reshape(10000, 32*32*3) #(10000, 32*32*3)
X_train = X_train.astype('float32') #change the type towards float32
X_test = X_test.astype('float32') #change the type towards float32
X_train /= 255.0 #normalize the range to be between 0.0 and 1.0
X_test /= 255.0 #normalize the range to be between 0.0 and 1.0

 Create the model

Simple sequential model is created using 4 hidden dense layers, which mean all
nodes between layers are connected. Each layer has 128 node. As for the
activation, softmax is used.

epochs = 50
batches = 128
D = X_train.shape[1]
H = 128

model4 = Sequential(name='manually_improved_network')

model4.add(Dense(H, input_shape=(D,), activation='relu', name="hidden"))
model4.add(Dense(H, activation='relu', name="hidden1"))
model4.add(Dense(H, activation='relu', name="hidden2"))
model4.add(Dense(H, activation='relu', name="hidden3"))
model4.add(Dense(n_classes, input_shape=(D,), activation='softmax', name="output"))

Yohanes Sugiarto
Ana Ningsih 23/43

The architecture of the model based on above implementation is summarized as
follows:

Figure 5-4. Model Architecture for CIFAR-10 Case

 Compile and train the model

model4.compile(loss=tf.keras.losses.CategoricalCrossentropy(),
 optimizer='adam',
 metrics=['accuracy'])

log4 = model4.fit(X_train,
 Y_train,
 batch_size=batches,
 epochs=epochs,
 validation_data=(X_test, Y_test))

 Result and Evaluation

f = plt.figure(figsize=(12,4))
ax1 = f.add_subplot(121)
ax2 = f.add_subplot(122)
ax1.plot(log4.history['loss'], label='Training loss')
ax1.plot(log4.history['val_loss'], label='Testing loss')
ax1.legend()
ax1.grid()
ax2.plot(log4.history['accuracy'], label='Training acc')
ax2.plot(log4.history['val_accuracy'], label='Val acc')
ax2.legend()
ax2.grid()

loss_test, metric_test = model4.evaluate(X_test, Y_test, verbose=0)
print('Test loss:', loss_test)
print('Test accuracy:', metric_test)

Figure 5-5. Evaluation on CIFAR-10 Case

Yohanes Sugiarto
Ana Ningsih 24/43

The result is unsurprisingly bad, because the model is quite naively constructed
using only dense layers. The test dataset is also used for both validation and
evaluation, which is not the best practice. The test accuracy is only 49.28%. But it
serves the purpose to provide short and quick confirmation of the environment
setup.

5.3.1.2 Experiment on ModelNet10

5.3.1.2.1 First Experiment
 Load and prepare the CIFAR-10 dataset

The ModelNet10 has two subset, training and test. For the validation during the
training, 20% of the training set is used. The test set will only used for evaluation.

import os

IMG_HEIGHT = 224
IMG_WIDTH = 224
BATCH_SIZE = 16

Load data from directory
data_dir = 'data/modelnet10_images'

train_dataset = tf.keras.preprocessing.image_dataset_from_directory(
 os.path.join(data_dir, "train"),
 validation_split = 0.2,
 subset = "training",
 seed = 123,
 image_size = (IMG_HEIGHT, IMG_WIDTH),
 batch_size = BATCH_SIZE)
val_dataset = tf.keras.preprocessing.image_dataset_from_directory(
 os.path.join(data_dir, "train"),
 validation_split = 0.2,
 subset = "validation",
 seed = 123,
 image_size = (IMG_HEIGHT, IMG_WIDTH),
 batch_size = BATCH_SIZE)
test_dataset = tf.keras.preprocessing.image_dataset_from_directory(
 os.path.join(data_dir, "test"),
 seed = 123,
 image_size = (IMG_HEIGHT, IMG_WIDTH),
 batch_size = BATCH_SIZE)

 Inspect and verify the data

import matplotlib.pyplot as plt

def show_imgs(dataset, nr):
 plt.figure(figsize = (10, 10))
 for images, labels in dataset.take(1):
 for i in range(nr):
 ax = plt.subplot(3, 3, i + 1)
 plt.imshow(images[i].numpy().astype("uint8"))
 plt.title(class_names[labels[i]])
 plt.axis("off")

print("Train dataset:")
show_imgs(train_dataset, 9)

Yohanes Sugiarto
Ana Ningsih 25/43

The images and the labels are displayed as follows:

Figure 5-6. ImageNet10 Images and Labels

 Preprocess the data

For the normalization, rescaling layer from Keras is used.

from tensorflow.keras.layers.experimental.preprocessing import Rescaling

normalization_layer = Rescaling(1./255)

This normalization layer can be added directly during the creation of the model.

 Create the model

The normalization of the images is added directly after the input. Relu is used as the
activation function.

model0 = Sequential([
 Rescaling(1./255, input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
 layers.Conv2D(16, 3, padding='same', activation='relu'),
 layers.MaxPooling2D(),
 layers.Conv2D(32, 3, padding='same', activation='relu'),
 layers.MaxPooling2D(),
 layers.Conv2D(64, 3, padding='same', activation='relu'),
 layers.MaxPooling2D(),
 layers.Flatten(),
 layers.Dense(128, activation='relu'),
 layers.Dense(n_classes)
])

The architecture of the model based on above implementation is summarized as
follows:

Yohanes Sugiarto
Ana Ningsih 26/43

Figure 5-7. First Model Architecture for ModelNet10

 Compile and train the model

The number of epochs is set to 5 and the optimizer is adam.

model0.compile(optimizer='adam',
 loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
 metrics=['accuracy'])

log = model0.fit(train_dataset,
 epochs=5,
 validation_data=val_dataset)

 Result and Evaluation

In the training process, the training accuracy reached 98.84% and the validation
accuracy stayed in the range of 90-95%.

Figure 5-8. First Model Training & Validation on ModelNet10

Yohanes Sugiarto
Ana Ningsih 27/43

Evaluation of the trained model on the test dataset gives a very good result. Test
accuracy is 83.95%. Following is the classification report:

Figure 5-9. First Model Classification Report for ModelNet10

5.3.1.2.2 Second Experiment
The second experiment use more complex model. Transfer learning using
MobileNetV2 is applied. MobileNet is Convolutional Neural Networks (CNN) which is
basically developed for mobile vision application. It has the classification models and all
the pre-trained weights.

 Create the model

The implementation into the experiment is as follows:

from tensorflow.keras.layers.experimental.preprocessing import Rescaling

base_model = keras.applications.MobileNetV2(
 weights='imagenet',
 include_top=False,
 input_shape=(IMG_HEIGHT, IMG_WIDTH, 3))

Freeze the base_model
base_model.trainable = False

Create the model structure
model = tf.keras.Sequential([
 keras.layers.Input((IMG_HEIGHT, IMG_WIDTH, 3)),
 Rescaling(1./255, input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)),
 base_model,
 keras.layers.GlobalAveragePooling2D(),
 keras.layers.Dense(1024),
 keras.layers.Activation('relu'),
 keras.layers.Dense(n_classes)
])

The pre-trained weights are based on ImageNet. In this experiment the imported
model is freezed, this means that the existing internal structure will not be changed
in the training.

Yohanes Sugiarto
Ana Ningsih 28/43

Figure 5-10. Second Model Architecture for ModelNet10

 Result and Evaluation

In the training process, the training accuracy reached 97.01% and the validation
accuracy reached 95.12%.

Figure 5-11. Second Model Training & Validation on ModelNet10

Evaluation of the second model on the test dataset gives a better result than the first
one. Test accuracy is 85.34%. Following is the classification report:

Figure 5-12. Second Model Classification Report for ModelNet10

Yohanes Sugiarto
Ana Ningsih 29/43

5.3.1.3 Experiment on ModelNet40

5.3.1.3.1 First Experiment
Using the same approaches and model from the first experiment on ModelNet40 gives
lower results.

In the training process, the training accuracy reached 97.79% and the validation
accuracy reached 88.15%.

Figure 5-13. First Model Training & Validation on ModelNet40

Evaluation of the first model on the test dataset gives also a lower result compared to
ModelNet10. Test accuracy is 79.70%. Following is the classification report:

Figure 5-14. First Model Classification Report for ModelNet40

Yohanes Sugiarto
Ana Ningsih 30/43

5.3.1.3.2 Second Experiment
Using the same transfer learning approaches on MobileNetV2 from the second
experiment on ModelNet40 gives also lower results. But it is similarly better than the
application of the first experiment.

In the training process, the training accuracy reached 94.34% and the validation
accuracy reached 90.92%.

Figure 5-15. Second Model Training & Validation on ModelNet40

Evaluation of the second model on the test dataset gives also a lower result compared
to ModelNet10 but better than the application of first model on ModelNet40. Test
accuracy is 82.04%. Following is the classification report:

Figure 5-16. Second Model Classification Report for ModelNet40

Yohanes Sugiarto
Ana Ningsih 31/43

5.3.2 Point-cloud Method
With the increase of the usage on sensors in 3D space, especially Lidar (Light
Detection and Ranging), 3D objects classification using point-cloud becomes more
important.

In the following experiment, classifications using point-cloud are performed. The first
experiment uses Kaolin and PyTorch. The second one uses Keras and TensorFlow.
Because of the limitation on computation capacity, both experiments are performed
only on ModelNet10.

5.3.2.1 Using Kaolin and PyTorch
Kaolin provides operations for 3D objects and Deep Learning models. This experiment
uses Kaolin for the generation of point-cloud and uses its PointNetClassifier for the
classification problem. This experiment is performed in Google Colab.

 Load and preprocess the data

The data is loaded using Kaolin's ModelNet. Therefore, the transformation from
meshes into point-clouds can be integrated in one pass. For every meshes 1000
points will be generated.

datapath = DATA_DIR10
device='cuda'
num_of_points = 1000

def to_device(inp):
 inp.to(device)
 return inp

transform = tfs.Compose([
 to_device,
 tfs.TriangleMeshToPointCloud(num_samples=num_of_points),
 tfs.NormalizePointCloud()
])

num_of_workers = 0 if device == 'cuda' else 10
memory = device != 'cuda'
batch_size = 16

train_loader = DataLoader(ModelNet(datapath,
 categories=classes,
 split='train',
 transform=transform),
 batch_size=batch_size,
 shuffle=True,
 num_workers=num_of_workers,
 pin_memory=memory)

val_loader = DataLoader(ModelNet(datapath,
 categories=classes,
 split='test',
 transform=transform),
 batch_size=batch_size,
 num_workers=num_of_workers,
 pin_memory=memory)

 Create the model

lr = 0.01

model = PointNetClassifier(num_classes=len(classes)).to(device)

optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = torch.nn.CrossEntropyLoss()

Yohanes Sugiarto
Ana Ningsih 32/43

 Train the model

The training process is done in 5 ephocs and adam is used as the optimizer.

epochs = 5

for e in range(epochs):
 print(f'{"":=<25}\nEpoch: {e+1}\n')

 train_loss = 0.0
 train_accuracy = 0.0

 model.train()
 for batch_idx, (data, attributes) in enumerate(tqdm(train_loader)):
 category = attributes['category'].to(device)
 pred = model(data)
 loss = criterion(pred, category.view(‐1))
 train_loss += loss.item()
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

 # Accuracy
 pred_label = torch.argmax(pred, dim=1)
 train_accuracy += torch.mean((pred_label == category.view(‐1)).float()).item()

 print('Train loss:', train_loss / len(train_loader))
 print('Train accuracy:', train_accuracy / len(train_loader))

 val_loss = 0.
 val_accuracy = 0.

 model.eval()
 with torch.no_grad():
 for batch_idx, (data, attributes) in enumerate(tqdm(val_loader)):
 category = attributes['category'].to(device)
 pred = model(data)
 loss = criterion(pred, category.view(‐1))
 val_loss += loss.item()

 # Accuracy
 pred_label = torch.argmax(pred, dim=1)
 val_accuracy += torch.mean((pred_label == category.view(‐1)).float()).item()

 print('Val loss:', val_loss / len(val_loader))
 print('Val accuracy:', val_accuracy / len(val_loader))

 Result and Evaluation

In the training process, the training accuracy reached 88.09% and the validation
accuracy reached 77.52%. The validation uses the test dataset.

As for the evaluation of the trained model, the test dataset is used again, but it is
shuffled. Figure 5-17 is the visualization of some evaluated point-clouds. The correct
identified or classified objects (point-clouds) are shown in green and the wrong ones
are in red.

Yohanes Sugiarto
Ana Ningsih 33/43

Figure 5-17. Point-cloud Classification on Kaolin & PyTorch

5.3.2.2 Using Keras and TensorFlow
 Load and preprocess the data

For the transformation from meshes to points, Trimesh function sample() is used.
The number of sampled points is 1000.

def transform_dataset(data_dir = "", num_points = 1000):
 train_points = []
 train_labels = []
 test_points = []
 test_labels = []
 class_map = {}
 folders = glob.glob(os.path.join(data_dir, "*"))

 for i, folder in enumerate(folders):
 print("Processing class: {}".format(os.path.basename(folder)))
 # store folder name with ID so we can retrieve later
 class_map[i] = folder.split("/")[‐1]
 # gather all files
 train_files = glob.glob(os.path.join(folder, "train/*"))
 test_files = glob.glob(os.path.join(folder, "test/*"))

 for f in train_files:
 train_points.append(trimesh.load(f).sample(num_points))
 train_labels.append(i)

 for f in test_files:
 test_points.append(trimesh.load(f).sample(num_points))
 test_labels.append(i)

 return (
 np.array(train_points),
 np.array(test_points),
 np.array(train_labels),
 np.array(test_labels),
 class_map,
)

NUM_POINTS = 1000
DATA_DIR = 'data/ModelNet10'
train_points, test_points, train_labels, test_labels, class_map = transform_dataset(DATA_DIR,
NUM_POINTS)

Yohanes Sugiarto
Ana Ningsih 34/43

 Augmenting and Packing into Datasets

BATCH_SIZE = 16

train_dataset = tf.data.Dataset.from_tensor_slices((train_points, train_labels))
test_dataset = tf.data.Dataset.from_tensor_slices((test_points, test_labels))

train_dataset = train_dataset.shuffle(len(train_points)).map(augment).batch(BATCH_SIZE)
test_dataset = test_dataset.shuffle(len(test_points)).batch(BATCH_SIZE)

 Create the model

from tensorflow.keras.models import Sequential
from tensorflow.keras import layers
from tensorflow.keras import regularizers

NUM_CLASSES = 10

Create the model structure
model = Sequential([
 layers.Input(shape=(NUM_POINTS, 3)),
 layers.Conv1D(32, kernel_size=1, padding="valid"),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.Conv1D(64, kernel_size=1, padding="valid"),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.Conv1D(512, kernel_size=1, padding="valid"),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.GlobalMaxPooling1D(),
 layers.Dense(256),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.Dense(128),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.Dense(
 3 * 3,
 kernel_initializer="zeros",
 bias_initializer=keras.initializers.Constant(np.eye(3).flatten()),
 activity_regularizer=regularizers.L2(0.01)
),
 layers.Reshape((3, 3)),
 layers.Conv1D(32, kernel_size=1, padding="valid"),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.Conv1D(64, kernel_size=1, padding="valid"),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.Conv1D(512, kernel_size=1, padding="valid"),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.GlobalMaxPooling1D(),
 layers.Dense(256),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.Dropout(0.2),
 layers.Dense(128),
 layers.BatchNormalization(momentum=0.0),
 layers.Activation("relu"),
 layers.Dropout(0.2),
 layers.Dense(NUM_CLASSES, activation="softmax")
])

model.summary()

 Compile and train the model

The number of epochs is set to 20 and the optimizer is adam.

Yohanes Sugiarto
Ana Ningsih 35/43

model.compile(
 loss="sparse_categorical_crossentropy",
 optimizer=keras.optimizers.Adam(learning_rate=0.001),
 metrics=["sparse_categorical_accuracy"],
)
epochs = 20

log = model.fit(train_dataset,
 epochs=epochs,
 validation_data=test_dataset)

 Result and Evaluation

The training process has the training accuracy of 84.31% and the validation
accuracy of only 63%.

The evaluation of the trained model is again performed to the test. Figure 5-18 is the
visualization of some evaluated point-clouds. The correct identified or classified
objects (point-clouds) are shown in green and the wrong ones are in red.

Figure 5-18. Point-cloud Classification on Keras & TensorFlow

5.4 Generation or Reconstruction Problem
There are many types and approaches for generation or reconstruction problem in 3D
computer vision. This experiment examine the approach highlighted in PyTorch3D,
namely the generation of 3D object using multi-view images. Because all models in
ModelNet dataset are monotonous, this experiment uses the rendered silhouette
images instead of the multi-view images.

The experiment on construction of a3D mesh using multi-view silhouette images
contains following steps:

 Importing libraries and requirements

Many PyTorch3D renderer functionalities are required for the experiment.

import os
import torch
import matplotlib.pyplot as plt

from pytorch3d.utils import ico_sphere
import numpy as np
import tqdm

Yohanes Sugiarto
Ana Ningsih 36/43

import trimesh

Util function for loading meshes
from pytorch3d.io import load_objs_as_meshes, save_obj, load_obj

from pytorch3d.loss import (
 chamfer_distance,
 mesh_edge_loss,
 mesh_laplacian_smoothing,
 mesh_normal_consistency,
)

Data structures and functions for rendering
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
 look_at_view_transform,
 OpenGLPerspectiveCameras,
 PointLights,
 DirectionalLights,
 Materials,
 RasterizationSettings,
 MeshRenderer,
 MeshRasterizer,
 SoftPhongShader,
 SoftSilhouetteShader,
 SoftPhongShader,
 TexturesVertex
)

import sys

sys.path.append(os.path.abspath(''))

 Load and examine the object

This experiment uses object from the ModelNet dataset. This dataset uses OFF
format.

DATA_DIR = 'data/ModelNet40'

#obj_filename = os.path.join(DATA_DIR, "airplane/train/airplane_0001.off")
#obj_filename = os.path.join(DATA_DIR, "bathtub/train/bathtub_0005.off")
#obj_filename = os.path.join(DATA_DIR, "bottle/train/bottle_0003.off")
obj_filename = os.path.join(DATA_DIR, "chair/train/chair_0001.off")
#obj_filename = os.path.join(DATA_DIR, "laptop/train/laptop_0001.off")

Use trimesh to visualize the data
target_mesh = trimesh.load_mesh(obj_filename)

target_mesh.show()

Figure 5-19. The Object chair_0001.off

Yohanes Sugiarto
Ana Ningsih 37/43

 Preprocess the target object

We will extract the mesh information from the object and create the PyTorch3D
mesh from that. The created mesh needs to be normalized. The normalization
includes resizing to fit for sphere with radius 1 and centering.

verts = torch.tensor(target_mesh.vertices)
verts = verts.type(torch.FloatTensor)
faces = torch.tensor(target_mesh.faces)

Initialize each vertex to be black in color.
#verts_rgb = torch.zeros_like(verts)[None] # (1, V, 3)
verts_rgb = torch.ones_like(verts)[None] # (1, V, 3)
textures = TexturesVertex(verts_features=verts_rgb.to(device))

mesh = Meshes(
 verts=[verts.to(device)],
 faces=[faces.to(device)],
 textures=textures
)

verts = mesh.verts_packed()
N = verts.shape[0]
center = verts.mean(0)
scale = max((verts ‐ center).abs().max(0)[0])
mesh.offset_verts_(‐center)
mesh.scale_verts_((1.0 / float(scale)));

 Generate the multi-view silhouette images

In this experiment, 40 images will be rendered from multiple viewpoints.

Rasterization settings for silhouette rendering
sigma = 1e‐4
raster_settings_silhouette = RasterizationSettings(
 image_size=128,
 blur_radius=np.log(1. / 1e‐4 ‐ 1.)*sigma,
 faces_per_pixel=50,
)

Silhouette renderer
renderer_silhouette = MeshRenderer(
 rasterizer=MeshRasterizer(
 cameras=camera,
 raster_settings=raster_settings_silhouette
),
 shader=SoftSilhouetteShader()
)

Render silhouette images. The 3rd channel of the rendering output is
the alpha/silhouette channel
silhouette_images = renderer_silhouette(meshes, cameras=cameras, lights=lights)
target_silhouette = [silhouette_images[i, ..., 3] for i in range(num_views)]

Visualize silhouette images
image_grid(silhouette_images.cpu().numpy(), rows=8, cols=5, rgb=False)
plt.show()

Yohanes Sugiarto
Ana Ningsih 38/43

Figure 5-20. Rendered Silhouette Images

 Initialization for the mesh fitting

The silhouette of the fitted mesh will be used to calculate loss. Therefore, new
silhouette renderer is needed. As for the base mesh, a sphere of radius 1 is used.
There are 2000 optimization steps used during the process.

The source shape ‐> a sphere of radius 1.
src_mesh = ico_sphere(4, device)

Renderer for Image‐based 3D Reasoning', ICCV 2019
sigma = 1e‐4
raster_settings_soft = RasterizationSettings(
 image_size=128,
 blur_radius=np.log(1. / 1e‐4 ‐ 1.)*sigma,
 faces_per_pixel=50,
)

Silhouette renderer
renderer_silhouette = MeshRenderer(
 rasterizer=MeshRasterizer(
 cameras=camera,
 raster_settings=raster_settings_soft
),
 shader=SoftSilhouetteShader()
)
Number of views to optimize over in each SGD iteration
num_views_per_iteration = 2
Number of optimization steps
Niter = 2000
Plot period for the losses
plot_period = 250

%matplotlib inline

losses = {"silhouette": {"weight": 1.0, "values": []},
 "edge": {"weight": 1.0, "values": []},
 "normal": {"weight": 0.01, "values": []},
 "laplacian": {"weight": 1.0, "values": []},
 }

Losses to smooth / regularize the mesh shape
def update_mesh_shape_prior_losses(mesh, loss):
 # and (b) the edge length of the predicted mesh
 loss["edge"] = mesh_edge_loss(mesh)

 # mesh normal consistency
 loss["normal"] = mesh_normal_consistency(mesh)

Yohanes Sugiarto
Ana Ningsih 39/43

 # mesh laplacian smoothing
 loss["laplacian"] = mesh_laplacian_smoothing(mesh, method="uniform")

verts_shape = src_mesh.verts_packed().shape
deform_verts = torch.full(verts_shape, 0.0, device=device, requires_grad=True)

The optimizer
optimizer = torch.optim.SGD([deform_verts], lr=1.0, momentum=0.9)

 The mesh fitting

loop = tqdm(range(Niter))

for i in loop:
 # Initialize optimizer
 optimizer.zero_grad()

 # Deform the mesh
 new_src_mesh = src_mesh.offset_verts(deform_verts)

 # Losses to smooth /regularize the mesh shape
 loss = {k: torch.tensor(0.0, device=device) for k in losses}
 update_mesh_shape_prior_losses(new_src_mesh, loss)

 for j in np.random.permutation(num_views).tolist()[:num_views_per_iteration]:
 images_predicted = renderer_silhouette(new_src_mesh, cameras=target_cameras[j],
lights=lights)
 predicted_silhouette = images_predicted[..., 3]
 loss_silhouette = ((predicted_silhouette ‐ target_silhouette[j]) ** 2).mean()
 loss["silhouette"] += loss_silhouette / num_views_per_iteration

 # Weighted sum of the losses
 sum_loss = torch.tensor(0.0, device=device)
 for k, l in loss.items():
 sum_loss += l * losses[k]["weight"]
 losses[k]["values"].append(float(l.detach().cpu()))

 # Print the losses
 loop.set_description("total_loss = %.6f" % sum_loss)

 # Plot mesh
 if i % plot_period == 0:
 visualize_prediction(new_src_mesh, title="iter: %d" % i, silhouette=True,
 target_image=target_silhouette[1])
 sum_loss.backward()
 optimizer.step()

 Evaluation and Result

The result is quite good. The problem occurs when the object has concave surfaces,
because the silhouette has no information on that kind of surfaces.

Figure 5-21. The Sculpted Mesh for chair_0001.off

Yohanes Sugiarto
Ana Ningsih 40/43

6 Conclusions

Our world is in 3 dimensions (including time being 4 dimensions). Almost all objects are
3D. Projections of objects around us into our eyes are in 2D, but we have the ability to
recognize the 3D shapes of these objects. This is currently what computer vision is
trying to achieve with the help of machine learning and deep learning. The presence of
additional sensors, such as the presence of Lidar (Light Detection and Ranging),
reflects the use of our additional senses when we want to recognize 3D objects or
scenes further.

This project studies how AI can recognize and reconstruct 3D objects. The current
possibility, with the help of existing Deep Learning frameworks, such as TensorFlow
and PyTorch, gives so much promise for further development and implementation.
Using a relatively simple Deep Learning model with only a few learning, most of the
neural networks models in this project are able to yield an average accuracy rate of
over 60%. However, performance improvements can still be made by optimizing and
fine-tuning the hyper parameters.

Another short-term strategy to gain performance is by applying the existing state-of-
the-art Deep Learning model. In this project the state-of-the-art deep learning model
has not been replicated, so the window for performance improvements is still very
much open.

6.1 Lessons Learned
3D Deep Learning is still relatively new, but there are already many tools, libraries,
frameworks, and models that can be used. We always have the option of building
everything from scratch or developing on top of existing technology. But it's good in this
case not to reinvent the wheel.

Even though machine learning looks like a black box, it is necessary to understand and
have an intuition about how the box might operate. This is similar to what happens in
our brains. That way, we can be better at preparing the data used for the learning
process and can get an understanding of the level of accuracy produced.

Working with multiple applications, libraries, and devices requires careful attention to
detail. Logs or records are needed, especially regarding version changes or
configuration changes. It will be very time consuming if a problem arises that cannot be
immediately identified whether it is related to the environment configuration or
implementation.

Careful and meticulous planning is necessary, both on the project execution and on the
documentation. Stay focused on the research, don’t get distracted, remember what the
main goal is.

6.2 Encountered Problems
The main issue during the development of Machine Learning models is the computing
resources. The machines used in this project have barely enough power for rough,
short, and simple models on relatively small dataset, in this case the ModelNet10. As
soon as the ModelNet40 is used, the training processes on the same models is taking
significantly longer time to process.

Using Google Colab is actually very helpful, especially with the availability of GPU
runtime. However, the default timeout from Google Colab is quite annoying, especially
for training processes that take a long time. Sometimes the training process is stopped

Yohanes Sugiarto
Ana Ningsih 41/43

by the timeout and must be repeated from the first epoch. The usage of GPU power on
the free version is also limited.

Another issue which happens quite often is the compatibility between libraries and
APIs, especially when working on two different platforms. Although it is usually stated
that the composition of several libraries is appropriate, sometimes the versions used
are not suitable.

6.3 Future Work
Although Artificial Intelligence has been around for years, it can be said that it is still in
its early stages of growth. In general, if AI is really an attempt to imitate the functions of
the brain, then the gap in that direction is still very large, there are still many aspects
that can be studied, applied, and utilized.

In the field of computer vision, both 2D and 3D, the use of AI, in this case Machine
Learning and Deep Learning, has just started. From the internal point of view, the
capability of existing AI models can still be improved. From the external point of view,
there are still so many areas that have not taken advantage of AI yet.

This project is a starting point for more in-depth research on AI for 2D-3D computer
vision. Further research on its actual use is still needed. The closest research that can
be conducted is implementation and deployment of some of the Machine Learning
models into real world applications. Further research on generative 3D design to
construct editable 3D representation is also a possibility.

In the field of ClassCAD programming and the manufacturing industry in general, the
exploration of the use of AI is still wide open. What is quite important is the collection of
data needed for these studies. The AI-driven product development could also be an
interesting topic in the next iteration.

Yohanes Sugiarto
Ana Ningsih 42/43

7 List of Figures

Figure 3-1. AI, ML, and DL (Babu, 2019) .. 5
Figure 4-1. Machine Learning Concept ... 8
Figure 4-2. Shallow Neural Network .. 10
Figure 4-3. Cell Computation .. 10
Figure 4-4. TensorFlow vs PyTorch .. 11
Figure 4-5. TensorFlow Logo .. 11
Figure 4-6. PyTorch Logo .. 12
Figure 4-7. PyTorch3D Core Components .. 13
Figure 4-8. Kaolin Core Components .. 13
Figure 4-9. 3D Representations for NN Input .. 14
Figure 4-10. Taxonomy of The Approaches .. 15
Figure 4-11. Example of 6 Depth Maps of A Chair .. 16
Figure 4-12. Architecture of The CNN ... 16
Figure 4-13. Average Accuracies .. 17
Figure 4-14. Comparison of Existing Methods and PointHop ... 17
Figure 4-15. Accuracies Comparison .. 18
Figure 5-1. Samples from ModelNet ... 20
Figure 5-2. A Chair Rendered in 12 Perspectives ... 20
Figure 5-3. CIFAR-10 Images and Labels ... 22
Figure 5-4. Model Architecture for CIFAR-10 Case .. 23
Figure 5-5. Evaluation on CIFAR-10 Case .. 23
Figure 5-6. ImageNet10 Images and Labels ... 25
Figure 5-7. First Model Architecture for ModelNet10 .. 26
Figure 5-8. First Model Training & Validation on ModelNet10 ... 26
Figure 5-9. First Model Classification Report for ModelNet10 ... 27
Figure 5-10. Second Model Architecture for ModelNet10 ... 28
Figure 5-11. Second Model Training & Validation on ModelNet10 28
Figure 5-12. Second Model Classification Report for ModelNet10 28
Figure 5-13. First Model Training & Validation on ModelNet40 ... 29
Figure 5-14. First Model Classification Report for ModelNet40 ... 29
Figure 5-15. Second Model Training & Validation on ModelNet40 30
Figure 5-16. Second Model Classification Report for ModelNet40 30
Figure 5-17. Point-cloud Classification on Kaolin & PyTorch .. 33
Figure 5-18. Point-cloud Classification on Keras & TensorFlow 35
Figure 5-19. The Object chair_0001.off ... 36
Figure 5-20. Rendered Silhouette Images .. 38
Figure 5-21. The Sculpted Mesh for chair_0001.off .. 39

Yohanes Sugiarto
Ana Ningsih 43/43

8 References

Babu, A. D. (2019, November 5). Artificial Intelligence vs Machine Learning vs Deep

Learning (AI vs ML vs DL). Retrieved from Medium.com:
https://medium.com/@alanb_73111/artificial-intelligence-vs-machine-learning-vs-
deep-learning-ai-vs-ml-vs-dl-e6afb7177436

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., . . . Yu, F.
(2015). ShapeNet: An Information-Rich 3D Model Repository. arXiv preprint
arXiv:1512.03012.

Dubovikov, K. (2017, June 20). PyTorch vs TensorFlow - Spotting The Difference.
Retrieved from Towards Data Science: https://towardsdatascience.com/pytorch-vs-
tensorflow-spotting-the-difference-
25c75777377b#:~:text=So%2C%20both%20TensorFlow%20and%20PyTorch,from
%20which%20you%20may%20choose.

Forum, W. E. (2015). Global Risks 2015, 10th Edition. Geneva: World Economic Forum.

Hadad, Y. (2017, March 16). 30 Amazing Application of Deep Learning. Retrieved from
Yaron Hadad: http://www.yaronhadad.com/deep-learning-most-amazing-
applications/

Hamet, P., & Tremblay, J. (2017). Artificial Intelligence in Medicine. Metabolism, S36-S40.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., . . . Adam, H.
(2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications. arXiv.

Mirbauer, M., Krabec, M., Křivánek, J., & Šikudová, E. (2021). Survey and Evaluation of
Neural 3D Shape Classification. techrxiv.14447250.v1.

Su, H., Maji, S., Kalogerakis, E., & Learned-Miller, E. (2015). Multi-view Convolutional
Neural Networks for 3D Shape Recognition. arXiv.

Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3D
ShapeNets: A Deep Representation for Volumetric Shapes. 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 1912-1920.

Zanuttigh, P., & Minto, L. (2017). Deep Learning for 3D Shape Classification from Multiple
Depth Maps. IEEE International Conference on Image Processing (ICIP), 3615-
3619.

Zhang, M., You, H., Kadam, P., Liu, S., & Kuo, C.-C. J. (2020). PointHop: An Explainable
Machine Learning Method for Point Cloud Classification. IEEE Transactions on
Multimedia, 1744-1755.

