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2 Summary 

Almost every industry that uses computers and digitalization is now expanding its 
technology implementation toward Artificial Intelligence (AI). The more activities that 
use information and communication technology, the more likely it is that AI can be 
integrated into these activities. 

In computer studies, the topic of artificial intelligence usually narrowed down to more 
specific terms that refer to the methods by which the intelligence is achieved, namely 
Machine Learning (ML) and Deep Learning. Both Machine Learning and Deep 
Learning need to learn from the observed data first, to then generate a solution or 
algorithm for a specific problem.  

In the standard Machine Learning approaches, the unique features of the input data 
need to be identified first, before the data is entered into the models. Deep Learning 
does not need such features extraction. The features that specify a solution will be 
directly learned from the data. Therefore, Deep Learning requires more data than 
standard Machine Learning but less engineer's intervention during the process. 

In recent years, Deep Learning has demonstrated remarkable capabilities in solving 2D 
graphic tasks such as image classification, object detection, semantic segmentation, 
etc. Currently, Deep Learning has also shown tremendous progress in solving 3D 
graphic tasks.  

This project examines the implementation of Deep Learning for the classification and 
generation/reconstruction of 3D objects. Using the Python programming language, two 
Deep Learning frameworks, TensorFlow and PyTorch, are utilized to create artificial 
neural networks. The results are impressive. They give so much promise for further 
development and implementation. Using a relatively simple Deep Learning model with 
only a few learning iteration, most of the neural networks models in this project are able 
to yield an average accuracy rate of over 60%.  

From the internal side, the capability of existing AI models can still be improved by 
optimizing and fine-tuning the hyper parameters or by incorporating existing state-of-
the-art networks. From the external side, there are still so many areas that have not 
taken advantage of AI yet. 
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3 Introduction 

3.1 Project Description 
Currently, almost all sectors that use computers and digitalization are expanding their 
technology implementations toward Artificial Intelligence (AI). Like information and 
communication technology, AI can be integrated into various fields. The more activities 
utilize information and communication technology, the more likely AI can be integrated 
into those activities. Many AI solutions have been incorporated into systems in such a 
way that sometimes we as users are not aware of their existence. 

In the past, many considered that AI was closely related to robotics because it was 
generally known that its emergence began with the development of robotics 
technology. Today, AI is becoming ubiquitous, and it is not just related to robotics. AI 
offers new solutions to solve complex problems. In the health sector, AI can be used to 
detect diseases with the help of expert systems. In the restaurant business, robots can 
be applied as substitutes for waiters. In the warehouse management, intelligence lines 
can be applied to sort and deliver goods. In the game development, state-of-the-art 
non-player characters (NPC) are becoming as intelligent as the players themselves. In 
transportation, self-driving cars have become smarter. And so on. Basically, AI can be 
found in almost every place. 

In computer studies, the topic of artificial intelligence usually narrows to a more specific 
term that refers to the method by which the intelligence is achieved, namely Machine 
Learning (ML). The term of Machine Learning implies that a machine or computer 
needs to learn the data first, to come up with a solution or an algorithm for a problem. 
Usually, for a particular problem, there will be a specific model of Machine Learning. 
Machine Learning models are oriented toward one specific task to make accurate 
predictions. An ML engineer will highlight specific features to be learned by the 
machine to identify the correct solution. 

A further term that is getting more popular is Deep Learning. Deep Learning can be 
considered as a sub-discipline of Machine Learning. Deep Learning requires much 
more data than normal Machine Learning but less engineer's intervention during the 
process. The features that specify a solution will be directly learned from the data. 
Deep learning is able to make more accurate predictions, but it will take a longer time 
to train or learn. 

 

Figure 3-1. AI, ML, and DL (Babu, 2019) 
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The increase of computer performance boosts the popularity of deep learning. There 
are many different fields in which deep learning is applied, such as: 

1. Natural Language Processing (NLP) 

Applications in this field for example: auto-completion, speech recognition, 
language translation, etc. 

2. Computer Vision 

Applications in this field for example: object detection, face detection, self-driving 
car, etc. 

3. Image and audio synthesis 

Applications in this field for example: image restoration, scenes generation in 
games, voice generation, music composer, etc. 

4. Signal processing 

Applications in this field for example: noise detection, denoising signals, etc. 

Generally, AI opens many possibilities that have never existed before. There is 
tremendous progress in fields that usually easy for human but difficult for machines. 

 

3.2 Goals 
The main objective of this project is to study the applications of artificial intelligence in 
computer vision and modeling, both for 2D and 3D. The focus of the project is the 
implementation of deep learning using existing frameworks. 

The following tasks provide an overview of the steps, studies, and areas to be explored 
in order to fulfill the main objective: 

 Include reviews of related works and concepts that previously have been studied 
and developed 

 Hands-on experience with existing models and methods that use deep learning 
frameworks 

o Data exploration 

o Exploration on model selection 

o Exploration on hyper-parameter tuning 

o Performance measures 

 Applying the hands-on into the selected 3D model realm  

3.3 Motivation 
The inspiration and motivation for this project came from the hype and widespread use 
of AI in almost all aspects of life. Technological advancements are increasing rapidly, 
huge performance improvements are happening on daily basis. This allows the use of 
AI quite easily. The term AI is becoming a household term and very popular. 

In the field of computer vision, AI is widely used, starting from simple image recognition 
to complex obstacle and collision detection for automated or self-driving vehicles, and 
even the creation of luxury arts.  
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The need to connect the dots between 2D vision to 3D model is also increasing. The 
use of AI in the field of 3D design and modeling is growing. In line with my current 
activity in 3D modeling and programming, it is important to study and examine the 
possibility of widening the current developments by applying AI solutions. 
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4 Literature Review 

4.1 Machine Learning 
There are many definitions of Machine Learning. This field is advancing rapidly, and 
more sub-disciplines are continually progressing. In general, Machine Learning 
consists of computer methods which analyze observation data to automatically detect 
patterns and use the uncovered patterns to perform tasks based on new unobserved 
data. This definition was stated by K. Murphy in 2012.  

The first definition of Machine Learning was given by Arthur Samuel in 1959: "Machine 
Learning is the field of study that gives computers the ability to learn without being 
explicitly programmed." A formally definition was also stated by Tom Mitchell from 
Carnegie Mellon University in 1997: "A Machine Learning program is said to learn from 
experience E with respect to some task T and some performance measure P, if its 
performance on T, as measured by P, improves with Experience E."  

The performance measure stated in the latter definition is a key concept to get the 
mathematical equations for the learning process. A Machine Learning model learns 
existing data and then create some sort of structure based on the data. This model will 
be then the agent for solving future tasks on new data. This procedure can be pictured 
as following diagram: 

 

Figure 4-1. Machine Learning Concept 

4.1.1 Type of Machine Learning 
There are three types of Machine Learning, namely: 

 Supervised Learning 

In supervised learning, the machine is trained on a labeled dataset. It contains the 
input data and the resulting output. The machine has to find its own algorithm, so 
that it can predict an accurate output when given new data. 

Supervise learning is usually used for classification and regression problems. 

 Unsupervised Learning 

In unsupervised learning, the machine is trained on a dataset which does not have 
any labels nor any information about the output, whatsoever. The machine must 
find similarities, patterns, and relationships inside the data. It has no specific output 
prediction, but it can give categorizations. 

Unsupervised learning is usually used for clustering problems. 
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 Reinforcement Learning 

In reinforcement learning, the machine is trained using reward and punishment 
scenario. The machine use trial and error to determine which methods deliver the 
most rewards. The more accurate the result, the machine will get a reward. On the 
other hand, if the result tends to worsen, the machine will get a punishment. This 
type of learning is suitable for optimization problems. 

4.1.2 Machine Learning Process 
Machine Learning process as overviewed in Figure 4-1 can be defined as sequence of 
following steps: 

 Data collection 

This is where data is gathered from various sources. Data can be in many different 
formats. 

 Preprocessing 

This is where data is analyzed and filtered to meet the requirements of the 
Machine Learning. The data will also be split into training set and test set. Training 
set will be used for training, test set will be used for validation. 

In this step, feature extraction can also be done to reduce the data into set of 
relevant features. 

 Training 

This is where the machine is learning. Its algorithm will be trained using training 
set. 

 Evaluation 

This is where the algorithm is evaluated using the test set. 

 Optimization 

This is where the machine adjusts its algorithm and parameters to increase 
accuracy. 

 Postprocessing 

Postprocessing is necessary if the output of the machine need to be adjusted to 
match the output criteria, e.g., adjusting class scores into class decision. 

4.2 Deep Learning 
Deep Learning is a sub-branch of Machine Learning. Deep Learning is inspired by how 
the brain works. A brain consists of billions of interconnected neuron cells. Deep 
Learning imitates this using interconnected artificial neurons. This is where the term 
Artificial Neural Network (ANN) comes. The connections between neurons determine 
how the output will be. Usually, the larger the data, the more number of neurons is 
needed. 

Deep Learning differs from Machine Learning in several ways. First, Deep Learning 
requires a significantly larger dataset. Second, which is quite a principle, Deep 
Learning does not require features engineering, it will extract all features during its 
learning process. Deep Learning is actually more flexible and powerful, but it requires 
longer learning process. 



 

Yohanes Sugiarto 
Ana Ningsih  10/43 

4.2.1 Artificial Neural Network (ANN) 
Basically, an Artificial Neural Network consists of three layer, as shown in the following 
image. 

 

Figure 4-2. Shallow Neural Network 

 Input Layer 

The input layer contains neurons which receive the input data. Those neurons then 
pass the information to the hidden layers. This layer does not perform any 
computation. 

 Hidden Layer 

The hidden layer can contains multiplle hidden layers. Figure 4-2 has only one 
hidden layer. This layer perform the computation and pass the result to the output 
layer. 

 Output Layer 

This is the final layer which perform the final computation to get the final result. 

4.2.2 Computation in ANN 
The computation in Artificial Neural Network is quite straight forward. Connections 
between neurons have numerical values which called weights. All weights connected to 
a neurons will be summed. The result will be fed to the activation function (step 
function, in Figure 4-3). 

 
Figure 4-3. Cell Computation 
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4.3 Machine Learning Frameworks 
Python is currently the most widely used programming language in Data Science and 
Machine Learning. Python is full of features and a platform for doing research. One of 
the important things in Python is Machine Learning frameworks. There are many 
Machine Learning libraries or frameworks that can be used in Python. The most 
wellknown Machine Learning frameworks are TensorFlow and PyTorch. Both are 
widely used in Deep Learning. Both are free and open-source. 

 

Figure 4-4. TensorFlow vs PyTorch 

According to GoogleTrends1, both are neck and neck in popularity. TensorFlow started 
earlier, but its popularity declined over time and now PyTorch is already on the slightly 
higher level. 

4.3.1 TensorFlow 
TensorFlow2 is free and open-source deep learning framework developed by Google 
based on Theano. Tensorflow is known as an industry-focused framework. TensorFlow 
is widely used by companies and businesses and now it gains more popularity in the 
research community.  

 
Figure 4-5. TensorFlow Logo 

Several key aspects of TensorFlow: 

 This framework is matured and exists for a long time. 

 Popular among industry professionals. 

 Support deployment into production. 

 Accompanied by visualization tool of Tensorboard. 

 
1 https://trends.google.com/ 
2 https://www.tensorflow.org/ 
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 Faster and high performance learning. 

TensorFlow was initially based on a static graph execution. Static graph requires that 
the Machine Learning model composition is defined at the beginning, there is no 
possibility to tweak or tune the model during the learning process. However, the newer 
version allows for eager mode like PyTorch and allows for real Phyton programming 
style. 

Keras 

Keras is a high-level Application Programming Interface (API) that facilitates Deep 
Learning programming. It is an free and open-source library. Keras is integrated in the 
TensorFlow framework. Keras API is user friendly, easy to use, easy to understand. In 
Keras, neural layers, cost functions, optimizers, initialization schemes, activation 
functions, and regularization schemes are all standalone modules that can be combine 
to create new Machine Learning models. 

4.3.2 PyTorch 
PyTorch3 is free and open-source deep learning framework developed by Facebook 
based on Torch. Although it came one year later after TensorFlow, PyTorch is very 
popular among researcher. PyTorch is known as a research-focused framework. It is 
also known for its simplicity, ease of use, and efficient memory usage. 

 

Figure 4-6. PyTorch Logo 

Several key aspects of PyTorch: 

 This framework is relatively new, but increasingly popular. 

 Popular among researchers. 

 No support deployment into production, third-party applications needed. 

 No visualization tool, third-party tools needed. 

 High performance learning but relatively slower than TensorFlow. 

PyTorch is based on dynamic eager execution. The components of Machine Learning 
model is constructed dynamically. 

4.4 Additional Libraries 

4.4.1 PyTorch3D 
PyTorch3D4 is a modular and optimized library specifically for 3D Deep Learning using 
PyTorch. It is also developed by Facebook. Working with 3D data is quite challenging. 
PyTorch3D supposed to accelerate those kind of work. 

 
3 https://pytorch.org/ 
4 https://pytorch3d.org/ 
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Figure 4-7. PyTorch3D Core Components 

PyTorch3D has 3D operators, heterogeneous batching capabilities, and a modular 
differentiable rendering API. Key features include: data structure for storing and 
manipulating triangle meshes; efficient operations on triangle meshes (projective 
transformations, graph convolution, sampling, loss functions); and a differentiable mesh 
renderer. 

4.4.2 Kaolin 
Kaolin is also a PyTorch library for 3D Deep Learning. It is developed by NVIDIA. 
Kaolin provides an API for working with a variety of 3D representations and includes a 
growing collection of GPU-optimized operations such as modular differentiable 
rendering, fast conversions between representations, data loading, 3D checkpoints and 
more. 

 

Figure 4-8. Kaolin Core Components 
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4.5 Paper Study 

4.5.1 Survey and Evaluation of Neural 3D Shape Classification Approaches 
This paper takes the topic of classification of 3D objects. The main focus is supervised 
learning, specifically the classification task, which is closely related to global feature 
extraction.  

The researchers conduct an extensive survey of existing Deep Learning based 3D 
shape classification approaches and categorize them based on the common approach 
ideas. They also evaluate 11 selected classification networks on three 3D object 
datasets, extending the evaluation to a larger dataset on which most of the selected 
approaches have not been tested yet. 

The categorization of the networks is based on the shape of the input, namely 
volumetric grid-based, multiple-viewpoint image-based, point cloud-based, networks 
which process the object’s shape or mesh approximation, and hybrid methods that 
process multiple representations simultaneously. Basic representation types are 
illustrated in Figure 4-9. 

 

Figure 4-9. 3D Representations for NN Input 

Classification neural network architectures can be divided into two parts: a feature 
extractor, which transforms the input shape representation to a feature vector, called 
descriptor, and a classifier, which learns to transform the extracted features into 
scores denoting the probability of individual classes. The surveyed approaches are 
shown in the following picture: 
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Figure 4-10. Taxonomy of The Approaches 

The datasets used for the evaluation are: ModelNet40, aligned ModelNet40, and 
ShapeNetCore. The experiments are conducted on Linux machines with AMD RYZEN 
1950X or two Intel Xeon E5-2680 v3 CPUs, 128 GB of RAM and NVIDIA GeForce GTX 
1080 Ti GPUs with driver version 440.44. 

As results, during the training, the reported accuracies were not reached. The main 
reason appears to be the usage of different data conversion methods. The researchers 
found that the data conversion method (e.g., point cloud sampling or image rendering 
method) can significantly impact the classification accuracy. They observe multi-view 
image-based representations yielding the best classification accuracy and rotational 
alignment being beneficial to mainly point-cloud-based networks. A larger dataset can 
also improve accuracies of most networks, especially on image-based networks. 

4.5.2 Deep Learning for 3D Shape Classification from Multiple Depth Maps 
This paper proposes a novel approach for the classification of 3D shapes exploiting a 
multi-branch Convolutional Neural Network (CNN). The algorithm starts by constructing 
a set of depth maps by rendering the input 3D shape from different viewpoints. 
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Figure 4-11. Example of 6 Depth Maps of A Chair 

The depth maps are fed to a multi-branch Convolutional Neural Network. Each branch 
of the network takes in input one of the depth maps and produces a classification 
vector by using 5 convolutional layers of progressively reduced resolution. 

 

Figure 4-12. Architecture of The CNN 

The various classification vectors are finally fed to a linear classifier that combines the 
outputs of the various branches and produces the final classification. 

The dataset used in this research is the Princeton ModelNet. Two subsets are used, 
namely: the ModelNet10 subset which contains 4,899 3D models divided into 10 
different categories and the ModelNet40 subset which contains 12,311 3D models 
divided into 40 different categories. 
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Figure 4-13. Average Accuracies 

According to the researchers, the proposed approach is fast and requires a relatively 
small training effort, especially if the proposed weights sharing approach is applied, 
The performance of the proposed network outperforms several recent state-of-the-art 
approaches, as shown in Figure 4-13 above. 

4.5.3 PointHop: An Explainable Machine Learning Method for Point Cloud 
Classification 

This paper proposed a method called PointHop for point cloud classification in Machine 
Learning. Point cloud models are popular due to easy access and complete description 
in the 3D space. A point cloud is represented by a set of points in the 3D coordinates. 

 

Figure 4-14. Comparison of Existing Methods and PointHop 

The PointHop method consists of two stages:  

1. Local-to-global attribute building through iterative one-hop information exchange. 

In the attribute building stage, the problem of unordered point cloud data is 
addressed using a space partitioning procedure and by developing an effective 
and robust descriptor that characterizes the relationship between a point and its 
one-hop neighbor in a PointHop unit. 

2. Classification and ensembles. 
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The feature vector obtained from multiple PointHop units is fed to a classifier, 
such as the support vector machine (SVM) classifier and the random forest (RF) 
classifier to get classification result. 

The dataset used in this research is the ModelNet40. The dataset contains 40 
categories of CAD models of objects such as airplanes, chairs, benches, cups, etc. 
Each initial point cloud has 2,048 points and each point has three Cartesian 
coordinates. There are 9,843 training samples and 2,468 testing samples. 

 

Figure 4-15. Accuracies Comparison 

During the experiment, the PointHop method significantly reduces the training process, 
while still maintaining the classification performance, in comparison with the state-of-
the-art Deep Learning. 
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5 Methodology 

5.1 Overview 
This project on computer vision consists of two studies in the field of 3D Deep 
Learning. The first one is to examine the classification problem of 3D models and then 
the second one is to examine the generation or reconstruction problem of 3D models. 

This project uses Python as the main programming language. In term of the Deep 
Learning library, both frameworks mentioned in the previous chapter, TensorFlow and 
PyTorch, are used interchangeably. 

The machines used in this project are as follows: 

 Windows machine: 

 Processor: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz, 2112 Mhz 

4 Core(s), 8 Logical Processor(s) 

 RAM:   32 GB 

 GPU:   -  Intel(R) UHD Graphics 620 (internal) 

-  NVIDIA Quadro P500 

 eGPU:  NVIDIA GeForce GTX 1080 Ti 

 Mac machine: 

 Processor: Apple M1 SoC 8-Core CPU, 16-Core Neural Engine 

4 cores high-performance, 4 cores energy-efficient 

 RAM:   8 GB 

 GPU:   7-Core (integrated) 

Development Environment 

Anaconda5 is used as the platform to help the development of Machine Learning. It 
provides almost all the necessary packages for Machine Learning in Python. As for the 
editor, Jupyter Notebook and JupyterLab are used. They are simple and stable, 
especially for Machine Learning prototyping purposes. 

Due to the limited capabilities of the machines, Google Colab6 is also used in the 
experiment. 

Microsoft Visual Studio Code is also used to program fast required Python 
components. 

In Python development, besides the standard Machine Learning libraries, additional 
libraries are used. The important ones are Trimesh used for 3D object operations, Glob 
used for directory operations, and PPTK used for point processing. 

 
5 https://www.anaconda.com/ 
6 https://colab.research.google.com/ 
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5.2 Dataset 
The main dataset used in this project is sourced from the Princeton ModelNet7. The 
Princeton ModelNet contains collection of 3D CAD models for objects. The 3D CAD 
models are categorized. There are two subsets of the Princeton ModelNet dataset, 
namely ModelNet10 and ModelNet40. The file format is Object File Format (OFF). This 
is a geometry definition file format and can store 2D or 3D objects. 

 

Figure 5-1. Samples from ModelNet 

ModelNet10 

The ModelNet10 subset contains CAD models in 10 categories, namely: 

 bathtub 
 bed 

 chair 
 desk 

 dresser 
monitor

 night_stand 
 sofa

 table 
 toilet 

 

There are 4,899 models in total, they are split into 3,991 models for training set and 
908 model for test set. 

For the multi-view approach, rendered images from 12 perspectives are used. 

 

Figure 5-2. A Chair Rendered in 12 Perspectives 

ModelNet40 

The ModelNet40 subset contains CAD models in 40 categories, namely: 

 airplane 
 bathtub 
 bed 
 bench 
 bookshelf 
 bottle 
 bowl 

 chair 
 cone 
 cup 
 curtain 
 desk 
 door 
 dresser

 glass_box 
 guitar 
 keyboard 
 lamp 
 laptop 
 mantel 
monitor

 person 
 piano 
 plant 
 radio 
 range_hood 
 sink 
 sofa

 stool 
 table 
 tent 
 toilet 
 tv_stand 
 vase 
 wardrobe

 
7 https://modelnet.cs.princeton.edu/ 
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 car  flower_pot  night_stand  stairs  xbox 
 

There are 12,311 models in total, they are split into 9,843 models for training set and 
2,468 model for test set. 

Same as the ImageNet10, for the multi-view approach, rendered images from 12 
perspectives are used. 

Additionally, the CIFAR-108 dataset is also used to verify some basic functionalities in 
classification using 2D images. The CIFAR-10 dataset consists of 60,000 colour 
images with 32x32 size, categorized in 10 classes. Each class consists of 6,000 
images. They are split into 50,000 training images and 10,000 test images. 

5.3 Classification Problem 
Classification problem becomes the "first-step" problem when it comes to Deep 
Learning, similar to the "Hello, World" when it comes to programming. 

Two approaches are used for the classification in this project. The first approach is 
using multi-view images and the second one is using point-cloud generated on 3D 
objects. 

5.3.1 Multi-view Images Method 
Basically, classification 3D objects using multi-view images is quite similar to standard 
2D images classification. The first experiment is 2D classification on CIFAR-10. The 
purpose of this first experiment is to make sure that the environment setup is adequate. 
The Deep Learning framework used in this experiment is TensorFlow. 

TensorFlow must be available on the einvironment setup. Import TensorFlow and 
confirm the version: 

import tensorflow as tf 
tf_version = tf.__version__ 
  
print(tf_version) 

5.3.1.1 Introduction on CIFAR-10 
 Load and prepare the CIFAR-10 dataset 

Loading the CIFAR-10 dataset is quite straightforward because it is included in 
Keras. 

from tensorflow.keras.datasets import cifar10 
(X_train, y_train), (X_test, y_test) = cifar10.load_data() 

 

 Inspect and verify the data 

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 
               'dog', 'frog', 'horse', 'ship', 'truck'] 
  
plt.figure(figsize=(10,10)) 
for i in range(25): 
    plt.subplot(5,5,i+1) 
    plt.xticks([]) 
    plt.yticks([]) 

 
8 https://www.cs.toronto.edu/~kriz/cifar.html 
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    plt.grid(False) 
    plt.imshow(X_train[i]) 
    plt.xlabel(class_names[y_train[i][0]]) 
plt.show() 

 

The images and the labels are displayed as follows: 

 

Figure 5-3. CIFAR-10 Images and Labels 

 Preprocess the data 

The input layer will be flatten and the pixel values are normalize in the floating 
number of range of 0.0 to 1.0. 

X_train =  X_train.reshape(50000, 32*32*3)  #change the shape towards (50000, 32*32*3) 
X_test =  X_test.reshape(10000, 32*32*3)    #(10000, 32*32*3) 
X_train =  X_train.astype('float32')        #change the type towards float32 
X_test = X_test.astype('float32')           #change the type towards float32 
X_train /= 255.0                            #normalize the range to be between 0.0 and 1.0 
X_test /= 255.0                             #normalize the range to be between 0.0 and 1.0 

 

 Create the model 

Simple sequential model is created using 4 hidden dense layers, which mean all 
nodes between layers are connected. Each layer has 128 node. As for the 
activation, softmax is used. 

epochs = 50 
batches = 128 
D = X_train.shape[1]  
H = 128 
  
model4 = Sequential(name='manually_improved_network') 
  
model4.add(Dense(H, input_shape=(D,), activation='relu', name="hidden")) 
model4.add(Dense(H, activation='relu', name="hidden1")) 
model4.add(Dense(H, activation='relu', name="hidden2")) 
model4.add(Dense(H, activation='relu', name="hidden3")) 
model4.add(Dense(n_classes, input_shape=(D,), activation='softmax', name="output")) 
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The architecture of the model based on above implementation is summarized as 
follows: 

 

Figure 5-4. Model Architecture for CIFAR-10 Case 

 Compile and train the model 

model4.compile(loss=tf.keras.losses.CategoricalCrossentropy(), 
             optimizer='adam', 
             metrics=['accuracy']) 
  
log4 = model4.fit(X_train, 
                Y_train, 
                batch_size=batches, 
                epochs=epochs, 
                validation_data=(X_test, Y_test)) 

 

 Result and Evaluation 

f = plt.figure(figsize=(12,4)) 
ax1 = f.add_subplot(121) 
ax2 = f.add_subplot(122) 
ax1.plot(log4.history['loss'], label='Training loss') 
ax1.plot(log4.history['val_loss'], label='Testing loss') 
ax1.legend() 
ax1.grid() 
ax2.plot(log4.history['accuracy'], label='Training acc') 
ax2.plot(log4.history['val_accuracy'], label='Val acc') 
ax2.legend() 
ax2.grid() 
  
loss_test, metric_test = model4.evaluate(X_test, Y_test, verbose=0) 
print('Test loss:', loss_test) 
print('Test accuracy:', metric_test) 

 

Figure 5-5. Evaluation on CIFAR-10 Case 
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The result is unsurprisingly bad, because the model is quite naively constructed 
using only dense layers. The test dataset is also used for both validation and 
evaluation, which is not the best practice. The test accuracy is only 49.28%. But it 
serves the purpose to provide short and quick confirmation of the environment 
setup. 

 

5.3.1.2 Experiment on ModelNet10 

5.3.1.2.1 First Experiment 
 Load and prepare the CIFAR-10 dataset 

The ModelNet10 has two subset, training and test. For the validation during the 
training, 20% of the training set is used. The test set will only used for evaluation. 

import os 
  
IMG_HEIGHT = 224 
IMG_WIDTH = 224 
BATCH_SIZE = 16 
  
# Load data from directory 
data_dir = 'data/modelnet10_images' 
  
train_dataset = tf.keras.preprocessing.image_dataset_from_directory( 
    os.path.join(data_dir, "train"), 
    validation_split = 0.2, 
    subset = "training", 
    seed = 123, 
    image_size = (IMG_HEIGHT, IMG_WIDTH), 
    batch_size = BATCH_SIZE) 
val_dataset = tf.keras.preprocessing.image_dataset_from_directory( 
    os.path.join(data_dir, "train"), 
    validation_split = 0.2, 
    subset = "validation", 
    seed = 123, 
    image_size = (IMG_HEIGHT, IMG_WIDTH), 
    batch_size = BATCH_SIZE) 
test_dataset = tf.keras.preprocessing.image_dataset_from_directory( 
    os.path.join(data_dir, "test"), 
    seed = 123, 
    image_size = (IMG_HEIGHT, IMG_WIDTH), 
    batch_size = BATCH_SIZE) 

 

 Inspect and verify the data 

import matplotlib.pyplot as plt 
  
def show_imgs(dataset, nr): 
    plt.figure(figsize = (10, 10)) 
    for images, labels in dataset.take(1): 
        for i in range(nr): 
            ax = plt.subplot(3, 3, i + 1) 
            plt.imshow(images[i].numpy().astype("uint8")) 
            plt.title(class_names[labels[i]]) 
            plt.axis("off") 
  
print("Train dataset:") 
show_imgs(train_dataset, 9) 
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The images and the labels are displayed as follows: 

 

Figure 5-6. ImageNet10 Images and Labels 

 Preprocess the data 

For the normalization, rescaling layer from Keras is used. 

from tensorflow.keras.layers.experimental.preprocessing import Rescaling 
  
normalization_layer = Rescaling(1./255) 

 

This normalization layer can be added directly during the creation of the model. 

 

 Create the model 

The normalization of the images is added directly after the input. Relu is used as the 
activation function. 

model0 = Sequential([ 
  Rescaling(1./255, input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), 
  layers.Conv2D(16, 3, padding='same', activation='relu'), 
  layers.MaxPooling2D(), 
  layers.Conv2D(32, 3, padding='same', activation='relu'), 
  layers.MaxPooling2D(), 
  layers.Conv2D(64, 3, padding='same', activation='relu'), 
  layers.MaxPooling2D(), 
  layers.Flatten(), 
  layers.Dense(128, activation='relu'), 
  layers.Dense(n_classes) 
]) 

 

The architecture of the model based on above implementation is summarized as 
follows: 
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Figure 5-7. First Model Architecture for ModelNet10 

 Compile and train the model 

The number of epochs is set to 5 and the optimizer is adam. 

model0.compile(optimizer='adam', 
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), 
              metrics=['accuracy']) 
  
log = model0.fit(train_dataset, 
                epochs=5, 
                validation_data=val_dataset) 

 

 Result and Evaluation 

In the training process, the training accuracy reached 98.84% and the validation 
accuracy stayed in the range of 90-95%. 

 

Figure 5-8. First Model Training & Validation on ModelNet10 
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Evaluation of the trained model on the test dataset gives a very good result. Test 
accuracy is 83.95%. Following is the classification report: 

 

Figure 5-9. First Model Classification Report for ModelNet10 

5.3.1.2.2 Second Experiment 
The second experiment use more complex model. Transfer learning using 
MobileNetV2 is applied. MobileNet is Convolutional Neural Networks (CNN) which is 
basically developed for mobile vision application. It has the classification models and all 
the pre-trained weights. 

 Create the model 

The implementation into the experiment is as follows: 

from tensorflow.keras.layers.experimental.preprocessing import Rescaling 
  
base_model = keras.applications.MobileNetV2( 
    weights='imagenet', 
    include_top=False, 
    input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)) 
  
# Freeze the base_model 
base_model.trainable = False 
  
# Create the model structure 
model = tf.keras.Sequential([ 
    keras.layers.Input((IMG_HEIGHT, IMG_WIDTH, 3)), 
    Rescaling(1./255, input_shape=(IMG_HEIGHT, IMG_WIDTH, 3)), 
    base_model, 
    keras.layers.GlobalAveragePooling2D(), 
    keras.layers.Dense(1024), 
    keras.layers.Activation('relu'), 
    keras.layers.Dense(n_classes) 
]) 

 

The pre-trained weights are based on ImageNet. In this experiment the imported 
model is freezed, this means that the existing internal structure will not be changed 
in the training. 
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Figure 5-10. Second Model Architecture for ModelNet10 

 Result and Evaluation 

In the training process, the training accuracy reached 97.01% and the validation 
accuracy reached 95.12%. 

 

Figure 5-11. Second Model Training & Validation on ModelNet10 

Evaluation of the second model on the test dataset gives a better result than the first 
one. Test accuracy is 85.34%. Following is the classification report: 

 

Figure 5-12. Second Model Classification Report for ModelNet10 
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5.3.1.3 Experiment on ModelNet40 

5.3.1.3.1 First Experiment 
Using the same approaches and model from the first experiment on ModelNet40 gives 
lower results. 

In the training process, the training accuracy reached 97.79% and the validation 
accuracy reached 88.15%. 

 

Figure 5-13. First Model Training & Validation on ModelNet40 

Evaluation of the first model on the test dataset gives also a lower result compared to 
ModelNet10. Test accuracy is 79.70%. Following is the classification report: 

 
Figure 5-14. First Model Classification Report for ModelNet40 
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5.3.1.3.2 Second Experiment 
Using the same transfer learning approaches on MobileNetV2 from the second 
experiment on ModelNet40 gives also lower results. But it is similarly better than the 
application of the first experiment. 

In the training process, the training accuracy reached 94.34% and the validation 
accuracy reached 90.92%. 

 

Figure 5-15. Second Model Training & Validation on ModelNet40 

Evaluation of the second model on the test dataset gives also a lower result compared 
to ModelNet10 but better than the application of first model on ModelNet40. Test 
accuracy is 82.04%. Following is the classification report: 

 

Figure 5-16. Second Model Classification Report for ModelNet40 
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5.3.2 Point-cloud Method 
With the increase of the usage on sensors in 3D space, especially Lidar (Light 
Detection and Ranging), 3D objects classification using point-cloud becomes more 
important.  

In the following experiment, classifications using point-cloud are performed. The first 
experiment uses Kaolin and PyTorch. The second one uses Keras and TensorFlow. 
Because of the limitation on computation capacity, both experiments are performed 
only on ModelNet10. 

5.3.2.1 Using Kaolin and PyTorch 
Kaolin provides operations for 3D objects and Deep Learning models. This experiment 
uses Kaolin for the generation of point-cloud and uses its PointNetClassifier for the 
classification problem. This experiment is performed in Google Colab. 

 Load and preprocess the data 

The data is loaded using Kaolin's ModelNet. Therefore, the transformation from 
meshes into point-clouds can be integrated in one pass. For every meshes 1000 
points will be generated. 

datapath = DATA_DIR10 
device='cuda' 
num_of_points = 1000 
  
def to_device(inp): 
    inp.to(device) 
    return inp 
  
transform = tfs.Compose([ 
    to_device, 
    tfs.TriangleMeshToPointCloud(num_samples=num_of_points), 
    tfs.NormalizePointCloud() 
]) 
  
num_of_workers = 0 if device == 'cuda' else 10 
memory = device != 'cuda' 
batch_size = 16 
  
train_loader = DataLoader(ModelNet(datapath,  
                                   categories=classes, 
                                   split='train', 
                                   transform=transform), 
                          batch_size=batch_size,  
                          shuffle=True,  
                          num_workers=num_of_workers,  
                          pin_memory=memory) 
                           
val_loader = DataLoader(ModelNet(datapath,  
                                   categories=classes, 
                                   split='test', 
                                   transform=transform), 
                          batch_size=batch_size,   
                          num_workers=num_of_workers,  
                          pin_memory=memory) 

 

 Create the model 

lr = 0.01 
  
model = PointNetClassifier(num_classes=len(classes)).to(device) 
  
optimizer = torch.optim.Adam(model.parameters(), lr=lr) 
criterion = torch.nn.CrossEntropyLoss() 
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 Train the model 

The training process is done in 5 ephocs and adam is used as the optimizer. 

epochs = 5 
  
for e in range(epochs): 
    print(f'{"":=<25}\nEpoch: {e+1}\n') 
  
    train_loss = 0.0 
    train_accuracy = 0.0 
  
    model.train() 
    for batch_idx, (data, attributes) in enumerate(tqdm(train_loader)): 
        category = attributes['category'].to(device) 
        pred = model(data) 
        loss = criterion(pred, category.view(‐1)) 
        train_loss += loss.item() 
        loss.backward() 
        optimizer.step() 
        optimizer.zero_grad() 
  
        # Accuracy 
        pred_label = torch.argmax(pred, dim=1) 
        train_accuracy += torch.mean((pred_label == category.view(‐1)).float()).item() 
  
    print('Train loss:', train_loss / len(train_loader)) 
    print('Train accuracy:', train_accuracy / len(train_loader)) 
  
    val_loss = 0. 
    val_accuracy = 0. 
  
    model.eval() 
    with torch.no_grad(): 
        for batch_idx, (data, attributes) in enumerate(tqdm(val_loader)): 
            category = attributes['category'].to(device) 
            pred = model(data) 
            loss = criterion(pred, category.view(‐1)) 
            val_loss += loss.item() 
  
            # Accuracy 
            pred_label = torch.argmax(pred, dim=1) 
            val_accuracy += torch.mean((pred_label == category.view(‐1)).float()).item() 
  
    print('Val loss:', val_loss / len(val_loader)) 
    print('Val accuracy:', val_accuracy / len(val_loader)) 

 

 Result and Evaluation 

In the training process, the training accuracy reached 88.09% and the validation 
accuracy reached 77.52%. The validation uses the test dataset. 

As for the evaluation of the trained model, the test dataset is used again, but it is 
shuffled. Figure 5-17 is the visualization of some evaluated point-clouds. The correct 
identified or classified objects (point-clouds) are shown in green and the wrong ones 
are in red.  
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Figure 5-17. Point-cloud Classification on Kaolin & PyTorch 

5.3.2.2 Using Keras and TensorFlow 
 Load and preprocess the data 

For the transformation from meshes to points, Trimesh function sample() is used. 
The number of sampled points is 1000. 

def transform_dataset(data_dir = "", num_points = 1000): 
    train_points = [] 
    train_labels = [] 
    test_points = [] 
    test_labels = [] 
    class_map = {} 
    folders = glob.glob(os.path.join(data_dir, "*")) 
     
    for i, folder in enumerate(folders): 
        print("Processing class: {}".format(os.path.basename(folder))) 
        # store folder name with ID so we can retrieve later 
        class_map[i] = folder.split("/")[‐1] 
        # gather all files 
        train_files = glob.glob(os.path.join(folder, "train/*")) 
        test_files = glob.glob(os.path.join(folder, "test/*")) 
  
        for f in train_files: 
            train_points.append(trimesh.load(f).sample(num_points)) 
            train_labels.append(i) 
  
        for f in test_files: 
            test_points.append(trimesh.load(f).sample(num_points)) 
            test_labels.append(i) 
  
    return ( 
        np.array(train_points), 
        np.array(test_points), 
        np.array(train_labels), 
        np.array(test_labels), 
        class_map, 
    ) 
  
NUM_POINTS = 1000 
DATA_DIR = 'data/ModelNet10' 
train_points, test_points, train_labels, test_labels, class_map = transform_dataset(DATA_DIR, 
NUM_POINTS) 
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 Augmenting and Packing into Datasets 

BATCH_SIZE = 16 
  
train_dataset = tf.data.Dataset.from_tensor_slices((train_points, train_labels)) 
test_dataset = tf.data.Dataset.from_tensor_slices((test_points, test_labels)) 
  
train_dataset = train_dataset.shuffle(len(train_points)).map(augment).batch(BATCH_SIZE) 
test_dataset = test_dataset.shuffle(len(test_points)).batch(BATCH_SIZE) 

 

 Create the model 

from tensorflow.keras.models import Sequential 
from tensorflow.keras import layers 
from tensorflow.keras import regularizers 
  
NUM_CLASSES = 10 
  
# Create the model structure 
model = Sequential([ 
    layers.Input(shape=(NUM_POINTS, 3)), 
    layers.Conv1D(32, kernel_size=1, padding="valid"), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.Conv1D(64, kernel_size=1, padding="valid"), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.Conv1D(512, kernel_size=1, padding="valid"), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.GlobalMaxPooling1D(), 
    layers.Dense(256), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.Dense(128), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.Dense( 
        3 * 3, 
        kernel_initializer="zeros", 
        bias_initializer=keras.initializers.Constant(np.eye(3).flatten()), 
        activity_regularizer=regularizers.L2(0.01) 
    ), 
    layers.Reshape((3, 3)), 
    layers.Conv1D(32, kernel_size=1, padding="valid"), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.Conv1D(64, kernel_size=1, padding="valid"), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.Conv1D(512, kernel_size=1, padding="valid"), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.GlobalMaxPooling1D(), 
    layers.Dense(256), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.Dropout(0.2), 
    layers.Dense(128), 
    layers.BatchNormalization(momentum=0.0), 
    layers.Activation("relu"), 
    layers.Dropout(0.2), 
    layers.Dense(NUM_CLASSES, activation="softmax") 
]) 
  
model.summary() 

 

 Compile and train the model 

The number of epochs is set to 20 and the optimizer is adam. 
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model.compile( 
    loss="sparse_categorical_crossentropy", 
    optimizer=keras.optimizers.Adam(learning_rate=0.001), 
    metrics=["sparse_categorical_accuracy"], 
) 
epochs = 20 
  
log = model.fit(train_dataset, 
                epochs=epochs, 
                validation_data=test_dataset) 

 

 Result and Evaluation 

The training process has the training accuracy of 84.31% and the validation 
accuracy of only 63%. 

The evaluation of the trained model is again performed to the test. Figure 5-18 is the 
visualization of some evaluated point-clouds. The correct identified or classified 
objects (point-clouds) are shown in green and the wrong ones are in red. 

 

Figure 5-18. Point-cloud Classification on Keras & TensorFlow 

 

5.4 Generation or Reconstruction Problem 
There are many types and approaches for generation or reconstruction problem in 3D 
computer vision. This experiment examine the approach highlighted in PyTorch3D, 
namely the generation of 3D object using multi-view images. Because all models in 
ModelNet dataset are monotonous, this experiment uses the rendered silhouette 
images instead of the multi-view images. 

The experiment on construction of a3D mesh using multi-view silhouette images 
contains following steps: 

 Importing libraries and requirements 

Many PyTorch3D renderer functionalities are required for the experiment. 

import os 
import torch 
import matplotlib.pyplot as plt 
  
from pytorch3d.utils import ico_sphere 
import numpy as np 
import tqdm 



 

Yohanes Sugiarto 
Ana Ningsih  36/43 

  
import trimesh 
  
# Util function for loading meshes 
from pytorch3d.io import load_objs_as_meshes, save_obj, load_obj 
  
from pytorch3d.loss import ( 
    chamfer_distance,  
    mesh_edge_loss,  
    mesh_laplacian_smoothing,  
    mesh_normal_consistency, 
) 
  
# Data structures and functions for rendering 
from pytorch3d.structures import Meshes 
from pytorch3d.renderer import ( 
    look_at_view_transform, 
    OpenGLPerspectiveCameras,  
    PointLights,  
    DirectionalLights,  
    Materials,  
    RasterizationSettings,  
    MeshRenderer,  
    MeshRasterizer,   
    SoftPhongShader, 
    SoftSilhouetteShader, 
    SoftPhongShader, 
    TexturesVertex 
) 
  
import sys 
  
sys.path.append(os.path.abspath('')) 

 

 Load and examine the object 

This experiment uses object from the ModelNet dataset. This dataset uses OFF 
format. 

DATA_DIR = 'data/ModelNet40' 
  
#obj_filename = os.path.join(DATA_DIR, "airplane/train/airplane_0001.off") 
#obj_filename = os.path.join(DATA_DIR, "bathtub/train/bathtub_0005.off") 
#obj_filename = os.path.join(DATA_DIR, "bottle/train/bottle_0003.off") 
obj_filename = os.path.join(DATA_DIR, "chair/train/chair_0001.off") 
#obj_filename = os.path.join(DATA_DIR, "laptop/train/laptop_0001.off") 
  
# Use trimesh to visualize the data 
target_mesh = trimesh.load_mesh(obj_filename) 
  
target_mesh.show() 

 
Figure 5-19. The Object chair_0001.off 
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 Preprocess the target object 

We will extract the mesh information from the object and create the PyTorch3D 
mesh from that. The created mesh needs to be normalized. The normalization 
includes resizing to fit for sphere with radius 1 and centering. 

verts = torch.tensor(target_mesh.vertices) 
verts = verts.type(torch.FloatTensor) 
faces = torch.tensor(target_mesh.faces) 
  
# Initialize each vertex to be black in color. 
#verts_rgb = torch.zeros_like(verts)[None]  # (1, V, 3) 
verts_rgb = torch.ones_like(verts)[None]  # (1, V, 3) 
textures = TexturesVertex(verts_features=verts_rgb.to(device)) 
  
mesh = Meshes( 
    verts=[verts.to(device)],    
    faces=[faces.to(device)],  
    textures=textures 
) 
  
verts = mesh.verts_packed() 
N = verts.shape[0] 
center = verts.mean(0) 
scale = max((verts ‐ center).abs().max(0)[0]) 
mesh.offset_verts_(‐center) 
mesh.scale_verts_((1.0 / float(scale))); 

 

 Generate the multi-view silhouette images 

In this experiment, 40 images will be rendered from multiple viewpoints. 

# Rasterization settings for silhouette rendering   
sigma = 1e‐4 
raster_settings_silhouette = RasterizationSettings( 
    image_size=128,  
    blur_radius=np.log(1. / 1e‐4 ‐ 1.)*sigma,  
    faces_per_pixel=50,  
) 
  
# Silhouette renderer  
renderer_silhouette = MeshRenderer( 
    rasterizer=MeshRasterizer( 
        cameras=camera,  
        raster_settings=raster_settings_silhouette 
    ), 
    shader=SoftSilhouetteShader() 
) 
  
# Render silhouette images.  The 3rd channel of the rendering output is  
# the alpha/silhouette channel 
silhouette_images = renderer_silhouette(meshes, cameras=cameras, lights=lights) 
target_silhouette = [silhouette_images[i, ..., 3] for i in range(num_views)] 
  
# Visualize silhouette images 
image_grid(silhouette_images.cpu().numpy(), rows=8, cols=5, rgb=False) 
plt.show() 
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Figure 5-20. Rendered Silhouette Images 

 Initialization for the mesh fitting 

The silhouette of the fitted mesh will be used to calculate loss. Therefore, new 
silhouette renderer is needed. As for the base mesh, a sphere of radius 1 is used. 
There are 2000 optimization steps used during the process. 

# The source shape ‐> a sphere of radius 1.   
src_mesh = ico_sphere(4, device) 
  
# Renderer for Image‐based 3D Reasoning', ICCV 2019 
sigma = 1e‐4 
raster_settings_soft = RasterizationSettings( 
    image_size=128,  
    blur_radius=np.log(1. / 1e‐4 ‐ 1.)*sigma,  
    faces_per_pixel=50,  
) 
  
# Silhouette renderer  
renderer_silhouette = MeshRenderer( 
    rasterizer=MeshRasterizer( 
        cameras=camera,  
        raster_settings=raster_settings_soft 
    ), 
    shader=SoftSilhouetteShader() 
) 
# Number of views to optimize over in each SGD iteration 
num_views_per_iteration = 2 
# Number of optimization steps 
Niter = 2000 
# Plot period for the losses 
plot_period = 250 
  
%matplotlib inline 
  
losses = {"silhouette": {"weight": 1.0, "values": []}, 
          "edge": {"weight": 1.0, "values": []}, 
          "normal": {"weight": 0.01, "values": []}, 
          "laplacian": {"weight": 1.0, "values": []}, 
         } 
  
# Losses to smooth / regularize the mesh shape 
def update_mesh_shape_prior_losses(mesh, loss): 
    # and (b) the edge length of the predicted mesh 
    loss["edge"] = mesh_edge_loss(mesh) 
     
    # mesh normal consistency 
    loss["normal"] = mesh_normal_consistency(mesh) 
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    # mesh laplacian smoothing 
    loss["laplacian"] = mesh_laplacian_smoothing(mesh, method="uniform") 
  
verts_shape = src_mesh.verts_packed().shape 
deform_verts = torch.full(verts_shape, 0.0, device=device, requires_grad=True) 
  
# The optimizer 
optimizer = torch.optim.SGD([deform_verts], lr=1.0, momentum=0.9) 

 

 The mesh fitting 

loop = tqdm(range(Niter)) 
  
for i in loop: 
    # Initialize optimizer 
    optimizer.zero_grad() 
     
    # Deform the mesh 
    new_src_mesh = src_mesh.offset_verts(deform_verts) 
     
    # Losses to smooth /regularize the mesh shape 
    loss = {k: torch.tensor(0.0, device=device) for k in losses} 
    update_mesh_shape_prior_losses(new_src_mesh, loss) 
     
    for j in np.random.permutation(num_views).tolist()[:num_views_per_iteration]: 
        images_predicted = renderer_silhouette(new_src_mesh, cameras=target_cameras[j], 
lights=lights) 
        predicted_silhouette = images_predicted[..., 3] 
        loss_silhouette = ((predicted_silhouette ‐ target_silhouette[j]) ** 2).mean() 
        loss["silhouette"] += loss_silhouette / num_views_per_iteration 
     
    # Weighted sum of the losses 
    sum_loss = torch.tensor(0.0, device=device) 
    for k, l in loss.items(): 
        sum_loss += l * losses[k]["weight"] 
        losses[k]["values"].append(float(l.detach().cpu())) 
  
    # Print the losses 
    loop.set_description("total_loss = %.6f" % sum_loss) 
     
    # Plot mesh 
    if i % plot_period == 0: 
        visualize_prediction(new_src_mesh, title="iter: %d" % i, silhouette=True, 
                             target_image=target_silhouette[1]) 
    sum_loss.backward() 
    optimizer.step() 

 

 Evaluation and Result 

The result is quite good. The problem occurs when the object has concave surfaces, 
because the silhouette has no information on that kind of surfaces. 

 

Figure 5-21. The Sculpted Mesh for chair_0001.off 
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6 Conclusions 

Our world is in 3 dimensions (including time being 4 dimensions). Almost all objects are 
3D. Projections of objects around us into our eyes are in 2D, but we have the ability to 
recognize the 3D shapes of these objects. This is currently what computer vision is 
trying to achieve with the help of machine learning and deep learning. The presence of 
additional sensors, such as the presence of Lidar (Light Detection and Ranging), 
reflects the use of our additional senses when we want to recognize 3D objects or 
scenes further. 

This project studies how AI can recognize and reconstruct 3D objects. The current 
possibility, with the help of existing Deep Learning frameworks, such as TensorFlow 
and PyTorch, gives so much promise for further development and implementation. 
Using a relatively simple Deep Learning model with only a few learning, most of the 
neural networks models in this project are able to yield an average accuracy rate of 
over 60%. However, performance improvements can still be made by optimizing and 
fine-tuning the hyper parameters. 

Another short-term strategy to gain performance is by applying the existing state-of-
the-art Deep Learning model. In this project the state-of-the-art deep learning model 
has not been replicated, so the window for performance improvements is still very 
much open. 

6.1 Lessons Learned 
3D Deep Learning is still relatively new, but there are already many tools, libraries, 
frameworks, and models that can be used. We always have the option of building 
everything from scratch or developing on top of existing technology. But it's good in this 
case not to reinvent the wheel.  

Even though machine learning looks like a black box, it is necessary to understand and 
have an intuition about how the box might operate. This is similar to what happens in 
our brains. That way, we can be better at preparing the data used for the learning 
process and can get an understanding of the level of accuracy produced. 

Working with multiple applications, libraries, and devices requires careful attention to 
detail. Logs or records are needed, especially regarding version changes or 
configuration changes. It will be very time consuming if a problem arises that cannot be 
immediately identified whether it is related to the environment configuration or 
implementation. 

Careful and meticulous planning is necessary, both on the project execution and on the 
documentation. Stay focused on the research, don’t get distracted, remember what the 
main goal is. 

6.2 Encountered Problems 
The main issue during the development of Machine Learning models is the computing 
resources. The machines used in this project have barely enough power for rough, 
short, and simple models on relatively small dataset, in this case the ModelNet10. As 
soon as the ModelNet40 is used, the training processes on the same models is taking 
significantly longer time to process. 

Using Google Colab is actually very helpful, especially with the availability of GPU 
runtime. However, the default timeout from Google Colab is quite annoying, especially 
for training processes that take a long time. Sometimes the training process is stopped 
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by the timeout and must be repeated from the first epoch. The usage of GPU power on 
the free version is also limited. 

Another issue which happens quite often is the compatibility between libraries and 
APIs, especially when working on two different platforms. Although it is usually stated 
that the composition of several libraries is appropriate, sometimes the versions used 
are not suitable. 

6.3 Future Work 
Although Artificial Intelligence has been around for years, it can be said that it is still in 
its early stages of growth. In general, if AI is really an attempt to imitate the functions of 
the brain, then the gap in that direction is still very large, there are still many aspects 
that can be studied, applied, and utilized. 

In the field of computer vision, both 2D and 3D, the use of AI, in this case Machine 
Learning and Deep Learning, has just started. From the internal point of view, the 
capability of existing AI models can still be improved. From the external point of view, 
there are still so many areas that have not taken advantage of AI yet. 

This project is a starting point for more in-depth research on AI for 2D-3D computer 
vision. Further research on its actual use is still needed. The closest research that can 
be conducted is implementation and deployment of some of the Machine Learning 
models into real world applications. Further research on generative 3D design to 
construct editable 3D representation is also a possibility. 

In the field of ClassCAD programming and the manufacturing industry in general, the 
exploration of the use of AI is still wide open. What is quite important is the collection of 
data needed for these studies. The AI-driven product development could also be an 
interesting topic in the next iteration. 
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